Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties fo algebraic groups

Representation Theory and Cohomology

Eric M. Friedlander

July 7, 2016

Emil Artin Lecture, Heidelberg

Emil Artin

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Michael Artin

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties fo algebraic groups

Representation theory

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups G a group and V a vector space

$$G \times V \rightarrow V, \qquad (g, v) \mapsto g \circ v$$

Conditions:
$$(g_1 \cdot g_2) \circ v = g_1 \circ (g_2 \circ v),$$

 $g \circ (a \cdot v + b \cdot w) = a \cdot (g \circ v) + b \cdot (g \circ w).$

What sort of groups?

What sorts of vector spaces?

Lie theory

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Sophus Lie 1842 - 1899

Perspective of geometry and differential equations

"continuous transformation groups"

acting *continuously*, e.g. on a real or complex vector space V

Lie theory: Understand these continuous representations of G in terms of representations of g = Lie(G).

Algebraic groups

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Claude Chevalley

1923 - 2003.

Algebraic groups over a field k

 GL_n is zero locus inside \mathbb{A}^{n^2+1} of $det(x_{i,j}) \cdot z = 1$

Fact: Each simple complex Lie group can be viewed as zero locus of further polynomial equations inside some $GL_N(\mathbb{C})$.

Algebraic representations

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups What is an algebraic representation of an algebraic group?

If V is finite dimensional, $V = k^{\oplus N}$, then $G \times V \to V$ is algebraic (a.k.a. "rational representation") if each matrix coefficient as a function of G is algebraic (i.e., in k[G]).

Example: Let $G = GL_2$ act on polynomials of degree *n* in 2 variables $k[x, y]_n$. Explicitly, we can write this as

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \circ x^{i}y^{n-i} = (ax+by)^{i}(cx+dy)^{n-i}$$

Equivalently: comodule structure $\Delta : V \to V \otimes k[G]$, so that $\Delta(v) = \sum v_i \otimes f_i$ with $g \circ v = \sum_i f_i(g)v_i$.

characteristic p > 0

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups Example: \mathbb{F}_p – field of *p*-elements. (Every non-zero element has an inverse; add 1 to itself *p* times and the answer is 0.) Example: $q = p^d$, d > 0. There is a unique finite field \mathbb{F}_q of order *q*.

Example: If *F* is a field of characteristic p > 0, then so is F(x).

If $X \subset \mathbb{A}^N$ is the zero locus of polynomial equations with coefficients in \mathbb{F}_q , then sending $(x_1, \ldots, x_N) \in \mathbb{A}^N$ to $(x_1^q, \ldots, x_N^q) \in \mathbb{A}^N$ sends points of X to points of X.

Key point: $(a + b)^p = a^p + b^p$ in characteristic p.

Frobenius map $F^q : X \to X$.

Wildness for finite groups, char p > 0

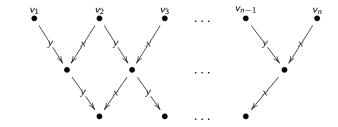
Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups k-linear actions of $\mathbb{Z}/p\times\mathbb{Z}/p$ on k-vector space V correspond to actions of

$$k[g,h]/(g^{p}=1=h^{p}) \simeq k[x,y]/(x^{p},y^{p}), \quad g=x+1, \ h=y+1$$

Example: Indecomposable, not irreducible



 $\mathbb{Z}/p \times \mathbb{Z}/p$ has wild representation type (for p > 2).

Solomon Lefschetz

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties fo algebraic groups

Solomon Lefschetz

1884 - 1972

Applications of algebraic topology to algebraic geometry

(classical) algebraic geometry

Characteristic p STINKS!

Cohomology

Definition

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

If $G \times M \to M$ is a *G*-action on the *k*-vector space *M*, then $H^0(G, M) = M^G = \{m \in M; g \circ m = m, \forall g \in G\}.$ $H^i(G, M) = (R^i(H^0(G, -))(M).$

If every indecomposable *G*-module is irreducible, then $H^i(G, M) = 0, i > 0.$

 $H^1(G, M)$ equals the group of equivalence classes of short exact sequences $0 \to M \to E \to k \to 0$ of *G*-modules (i.e., extensions of *k* by *M*).

Cohomology and Geometry

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Daniel Quillen

1940 - 2011

Spectrum of cohomology of a finite group *G*

Spec($H^*(G, k)$), affine algebraic variety

Extension of Quillen by J. Carlson et al: use spirit of Quillen to study representations of a finite group G.

Failure of Lie theory over fields of characteristic p > 0

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties fo algebraic groups **EXAMPLE** SL_2 action on the homogeneous polynomials of degree precisely p in two variables: $V = k[x, y]_p$. Inside V, there is a 2-dimensional subrepresentation $W \subset V$ consisting of polynomials linear in x^p, y^p . There is no splitting of $W \subset V$ as representations of SL_2 .

V is *indecomposable*, but not *irreducible*.

Much WORSE news:

If action of SL_2 on vector space V factors through $F: SL_2 \rightarrow SL_2$, then Lie algebra action is trivial (because differential $d(F) = 0: \mathfrak{sl}_2 \rightarrow \mathfrak{sl}_2$).

Functors and group schemes

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups



Alexander Grothendieck

1928 - 2014

Functorial point of view

A group scheme over *k* is a *functor*

(comm. k-alg) to (groups).

Replace the Lie algebra of G by "infinitesimal neighborhoods of the identity", so called "Frobenius kernels" $G_{(r)}$.

Frobenius kernels

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

One can view $G_{(r)} \subset G$ as a representable subfunctor of G

 $(comm. \ k-alg) \rightarrow (groups), \quad R \mapsto ker\{F^r : G(R) \rightarrow G(R)\}.$

Example

 $GL_{N(r)}$ has coordinate algebra $k[X_{i,j}]/(X_{i,j}^{p^r} - \delta_{i,j})$, a finite dimensional, commutative, local *k*-algebra; mulitplication of dual $kGL_{N(r)}$ is given by the multiplication of GL_N .

 $kG_{(r)}$ is always a f. dim, co-commutative Hopf algebra.

Given a representation $G \times V \rightarrow V$, this structure is faithfully reflected by the collection of structures $\{G_{(r)} \times V \rightarrow V\}$.

The additive group \mathbb{G}_{a}

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

\mathbb{G}_a : (comm. *k*-alg) \rightarrow (abelian groups); $\mathbb{G}_a(R) = R^+$. $k[\mathbb{G}_a] = k[T]$; group structure determined by comultiplication

 $\Delta: k[T] \rightarrow k[T] \otimes k[T], \quad T \mapsto (T \otimes 1) + (1 \otimes T).$

Lemma

Definition

A \mathbb{G}_a -action on a k-vector space V is naturally equivalent to the following data:

An infinite sequence of *p*-nilpotent, pairwise commuting: operators $u_0, u_1, u_2, u_3 \dots : V \to V$ such that for any $v \in V$ all but finitely many $u_i(v)$ are 0.

Varieties for \mathbb{G}_a -modules

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Definition

The cohomological variety $V^{coh}(\mathbb{G}_a) \equiv Spec_{cont} H^*(\mathbb{G}_a, k)$.

The 1-parameter subgroup variety $V(\mathbb{G}_a) \equiv \{\psi : \mathbb{G}_a \to \mathbb{G}_a\}.$

Proposition

$$V^{coh}(\mathbb{G}_a) \simeq \mathbb{A}^{\infty} \simeq V(\mathbb{G}_a).$$

Definition

$$V^{coh}(\mathbb{G}_a)_M \equiv \{\mathfrak{p} \subset H^*(\mathbb{G}_a,k) : \mathfrak{p} \supset ann(H^*(\mathbb{G}_a,M))\}.$$

 $V(\mathbb{G}_a)_M \equiv \{ \psi : \mathbb{G}_a \to \mathbb{G}_a : \text{such that NOT all blocks of size p for action at } \psi \}.$

Support varieties for \mathbb{G}_a

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups For *M* finite dimensional, $V^{coh}(\mathbb{G}_a)_M = V(\mathbb{G}_a)_M \subset \mathbb{A}^{\infty}$.

- Many "standard" properties including V(𝔅_a)_M = {0} if M is injective, V(𝔅_a)_M = A[∞] if M = k.
- "Mock injective" modules: there exist (necessarily infinite dimensional) 𝔅_a-modules M which are not injective, but V(𝔅_a)_M = {0}.
- Know exactly which subvarieties X ⊂ A[∞] are of form X = V(G_a)_M for some finite dimensional G_a-module M.
- Lots of interesting questions about which X ⊂ A[∞] are of form X = V(G_a)_M for an arbitrary G_a-module M.

Other algebraic groups G

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups Cohomology NOT very useful in general. For example, $H^*(G, k)$ is trivial for G a simple algebraic group.

Will describe a theory using 1-parameter subgroups $\psi : \mathbb{G}_a \to G$ which has many useful properties.

For *G* unipotent (e.g., $U_N \subset GL_N$), then study of 1-parameter subgroups leads to cohomological calculations.

1-parameter subgroups for infinitesimal kernels $G_{(r)}$

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Theorem [Suslin-F-Bendel] with the variety $V(G_{(r)})_M$.

Andrei Suslin

Joint work: Quillen's geometry extends to Frobenius kernels.

computations for $H^*(G_{(r)}, k)$

in terms of the variety of $V(G_{(r)})$ of infinitesimal 1-parameter subgroups $\mathbb{G}_{a(r)} \to G_{(r)}$.

 $V^{coh}(G_{(r)})_M$ can be identified

Action of G on M at a 1-parameter subgroup

Theorem

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups Assume that G is a linear algebra group of exponential type. The ind-variety V(G) of 1-parameter subgroups of G is \simeq variety $C_{\infty}(\mathcal{N}_p(\text{Lie}(G)))$ consisting of finite sequences of p-nilpotent, pair-wise commuting elements of Lie(G):

$$\{\underline{B} \in \mathcal{C}_{\infty}(\mathcal{N}_{p}(Lie(G)))\} \xrightarrow{\sim} V(G), \quad \underline{B} \mapsto \mathcal{E}_{\underline{B}}.$$

Definition

The action on a rational *G*-module *M* at the 1-parameter subgroup $\mathcal{E}_{\underline{B}} : \mathbb{G}_a \to G$ is the action of the *p*-nilpotent operator

$$\sum_{s\geq 0} (\mathcal{E}_{B_s})_*(u_s) \in kG.$$

Formulation of support variety $V(G)_M$

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Definition

The support variety $V(G)_M \subset V(G)$ of M is the subset of those $\underline{B} \in \mathcal{C}_{\infty}(\mathcal{N}_p(Lie(G)))$ such that $\psi_{\underline{B}}$ has some block of size < p.

■ For *M* finite dimensional, V(G)_M carries the same information as the earlier considered V(G_(r))_M for r >> 0.

• For
$$G = \mathbb{G}_a$$
, $V(\mathbb{G}_a)_M \simeq V^{coh}(\mathbb{G}_a)_M$.

- For $G = U_N$, $V^{coh}(U_N)_M$ is much less informative than $V(U_N)_M$.
- Leads to interesting classes of mock injective and mock trivial G-modules.
- Can compute some examples of the form $V(G)_{G/H}$.

"Classical properties" of $M \mapsto V(G)_M$

Theorem

Representation Theory and Cohomology

Intertwining

Eric M. Friedlander

Support varieties for algebraic groups

- **1** Tensor product: $V(G)_{M\otimes N} = V(G)_M \cap V(G)_N$.
- **2** Two out of three: If $0 \to M_1 \to M_2 \to M_3 \to 0$, then the support variety $V(G)_{M_i}$ of one of the M_i is contained in the union of the support varieties of the other two.
- **3** For the Frobenius twist $M^{(1)}$ of M,

 $V(G)_{M^{(1)}} = \{\mathcal{E}_{(B_0,B_1,B_2...)} \in V(G) : \mathcal{E}_{(B_1^{(1)},B_2^{(1)},...)} \in V(G)_M\}.$

For any r > 0, the restriction of M to kG_(r) is injective (equivalently, projective) if and only if the intersection of V(G)_M with the subset {ψ_B : B_s = 0, s > r} ⊂ V(G}) equals {E₀}.

Cohomology for U_N

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups **Strategy:** For computations of $H^*(U_{N(r)}, k)$, $H^*(U_N, k)$:

- (F-Suslin) give a means of construction of cohomology classes.
- (Suslin-F-Bendel) give detection of cohomology modulo nilpotents.
- Use the descending central series

$$U_N = \Gamma_1 \supset \Gamma_2 \supset \cdots \subset \Gamma_N = \{e\}$$

with each subquotient a product of \mathbb{G}_a 's.

Key tool is the T_N-equivariant Lyndon-Hochschild-Serre spectral sequence along with the action of the Steenrod algebra.

LHS Spectral sequence

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups Key technique for computation is the T_N -equivariant Hochschild-Serre spectral sequence

$$E_2^{*,*} = H^*(U_N/\Gamma_{\nu-1},k) \otimes H^*(\Gamma_{\nu-1}/\Gamma_{\nu},k) \Rightarrow H^*(U_N/\Gamma_{\nu},k)$$

for terms of the descending central series for U_N .

Compute differentials using the Steenrod algebra: for example, $d_{2p^i+1}^{0,2p^i}((x_{s,t}^{(i)})^{p^i})$ equals

$$\sum_{t=1}^{\nu-1} (x_{s,s+t}^{(i)})^{p^{j}} \otimes y_{s+t,s+\nu}^{(i+1+j)} - (x_{s+t,s+\nu}^{(i)})^{p^{j}} \otimes y_{s,s+t}^{(i+1+j)}).$$

We conclude the relation

$$(x_{s,s+1}^{(i)})^{p^{i+1}} \cdot (x_{s_1,s+2})^{(i+1+j)} - (x_{s+1,s+2}^{(i)})^{p^{i+1}} \cdot (x_{s,s+1})^{(i+1+j)} \quad 0 \le j.$$

Calculations of cohomology

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups For $p \ge N - 1$, $H^*((U_N)_{(r)}, k)$ modulo nilpotents is given by explicit construction augmenting $k[V_r(U_N)]$. Similar statement of terms U_N/Γ_v of lower central series.

Remark

Theorem

This improves [Suslin-F-Bendel] in that we can compare for increasing r, take the limit as r goes to ∞ .

Theorem

 $\operatorname{Spec}_{cont} H^{\bullet}(U_3, k)$ is determined by the image of $H^{\bullet}(U_3/\Gamma, k) \to H^{\bullet}(U_3, k)$.

Continuous prime ideal spectrum

Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Definition

$$V^{coh}(G) \equiv \varinjlim_{r} im\{\operatorname{Spec} H^{\bullet}(G_{(r)}, k) \to \operatorname{Spec} H^{\bullet}(G, k)\}.$$

Example

$$egin{array}{ll} H^*(\mathbb{G}_a,k) &= S^*(x^{(i)},i\geq 1)\otimes \Lambda^*(y^{(i)},i\geq 0), ext{ so that}\ V^{coh}(\mathbb{G}_a) &\simeq \mathbb{A}^\infty \ . \end{array}$$

Proposition

For
$$p \geq 3$$
, $H^{\bullet}(U_N, k)$ embeds in $\varprojlim_r H^{\bullet}(U_{N(r)}, k)$

Proposition

There exists a natural, surjective map

 $\operatorname{Proj} V(G)_M \to \operatorname{Proj} V^{\operatorname{coh}}(G)_M.$