Functional Analysis 2 - Exercise Sheet 8

Winter term 2019/20, University of Heidelberg

Exercise 8.1

Let $P: \mathbb{R} \longrightarrow \mathbb{R}$ be the Poisson kernel, given by $P(x):=\frac{1}{\pi} \frac{1}{1+x^{2}}$ for all $x \in \mathbb{R}$. For $t>0$ let $P_{t}(x):=\frac{1}{t} P\left(\frac{x}{t}\right)$ be its L^{1}-dilation.
a) Show that $\hat{P}(\xi)=\frac{1}{\sqrt{2 \pi}} e^{-|\xi|}$ for all $\xi \in \mathbb{R}$.
b) Let $f \in L^{2}(\mathbb{R})$. Show that the function $u(x, t):=\left(P_{t} * f\right)(x)$ solves the problem

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}+\partial_{x}^{2}\right) u(x, t) & =0 & & \text { in } \mathbb{R} \times(0, \infty), \tag{1.1}\\
u(x, 0) & =f(x) & & \text { for almost all } x \in \mathbb{R} .
\end{align*}\right.
$$

c) Let $T:[0, \infty) \longrightarrow L^{2}(\mathbb{R})$ be given by $T(0)=$ id and $T(t) f:=P_{t} * f$ for all $t>0$. Show that T is a C^{0}-semigroup on $L^{2}(\mathbb{R})$.

Proof: We denote $X:=L^{2}(\mathbb{R})$.
a) Let $\xi \in \mathbb{R}$ and $g(\xi)=\frac{1}{\sqrt{2 \pi}} e^{-|\xi|}$, then we have

$$
\begin{align*}
2 \pi \hat{g}(x) & =\int_{\mathbb{R}} e^{-|\xi|-\mathbf{i} x \xi} \mathrm{~d} \xi=\int_{0}^{\infty} e^{-\xi-\mathbf{i} x \xi}+e^{-\xi+\mathbf{i} x \xi} \mathrm{~d} \xi \tag{1.2}\\
& =-\frac{1}{1+\mathbf{i} x}\left[e^{-\xi-\mathbf{i} x \xi}\right]_{0}^{\infty}+\frac{1}{1-\mathbf{i} x}\left[e^{-\xi+\mathbf{i} x \xi \xi}\right]_{0}^{\infty} \tag{1.3}\\
& =\frac{1}{1+\mathbf{i} x}+\frac{1}{1-\mathbf{i} x}=\frac{1-\mathbf{i} x+1+\mathbf{i} x}{1+x^{2}}=2 \pi P(x) \tag{1.4}
\end{align*}
$$

Since both functions g and P are radially symmetric, we get from Fourier inversion that $\hat{P}=g$.
b) First note that by Young's convolution inequality the convolution is well defined and $u \in X$. Also note from the dilation theorem of Fourier transforms we get $\hat{P}_{t}(\xi)=g(t \xi)$ for all $t>0$ and $\xi \in \mathbb{R}$. So we get from the product formula of Fourier transforms (in the x variable) $\hat{u}(t, \xi)=\sqrt{2 \pi} \hat{P}_{t}(\xi) \hat{f}(\xi)$, from which we deduce

$$
\begin{equation*}
\mathcal{F}\left[\left(\partial_{t}^{2}+\partial_{x}^{2}\right) u(\cdot, t)\right]=\partial_{t}^{2} \hat{u}(t, \xi)-\xi^{2} \hat{u}(t, \xi)=-\xi^{2} e^{-t|\xi|} \hat{f}(\xi)+\xi^{2} e^{-t|\xi|} \hat{f}(\xi)=0 \tag{1.5}
\end{equation*}
$$

Fourier inversion then yields, that u is a solution to the differential equation. The boundary data is correct since the family $\left(P_{t}\right)_{t}$ is a Dirac sequence.
c) For $t, s>0$ we see

$$
\begin{equation*}
P_{t} * P_{s}=\mathcal{F}^{-1}\left[\mathcal{F}\left[P_{t} * P_{s}\right]\right]=\sqrt{2 \pi} \mathcal{F}^{-1}\left[e^{-(t+s)|\cdot|}\right]=P_{t+s} . \tag{1.6}
\end{equation*}
$$

In b) we already clarified that $P_{t} * f \rightarrow f$ in X (since $\left(P_{t}\right)_{t}$ is a Dirac sequence). This makes T into a C^{0}-semigroup.

Exercise 8.2

Let X be a Banach space and let T be a C^{0}-semigroup. For every $t>0$ let $T(t)$ be invertible and $T(t)^{-1} \in \mathcal{L}(X)$.
a) Show that $S:[0, \infty) \longrightarrow \mathcal{L}(X)$ defined by $S(t):=T(t)^{-1}$ is a C^{0}-semigroup.
b) Let A be the generator of T. Show that $-A$ is the generator of S.
c) Define $U: \mathbb{R} \longrightarrow \mathcal{L}(X)$ via

$$
U(t):=\left\{\begin{align*}
T(t) & \text { if } t \geq 0, \tag{2.1}\\
S(-t) & \text { if } t<0 .
\end{align*}\right.
$$

Show that U is a C^{0}-group.

Proof:

a) Since $T(0)=$ id we have $S(0)=$ id. For $s, t>0$ we have

$$
\begin{equation*}
S(t+s)=T(t+s)^{-1}=T(s+t)^{-1}=(T(s) T(t))^{-1}=T(t)^{-1} T(s)^{-1}=S(t) S(s) . \tag{2.2}
\end{equation*}
$$

It remains to show the strong continuity. Note that $T(t)$ is bijective for every $t \geq 0$. Fix $s>1$ and let $x \in X$, then there exists $y \in X$ such that $T(s) y=x$. Then we have for every $t<1$

$$
\begin{equation*}
\|S(t) x-x\|=\|S(t) T(t) T(s-t) y-T(s) y\|=\|T(s-t) y-T(s) y\| \xrightarrow{t \rightarrow 0} 0 \tag{2.3}
\end{equation*}
$$

by the continuity of T (c.f. Lemma 4.3). Altogether, this makes S into a C^{0}-semigroup.
b) Let $x \in \mathcal{D}(A)$. Since S is a C^{0}-semigroup by a), there exist $M \geq 1$ and $\omega \geq 0$ such that $\|S(t)\|_{o p} \leq M e^{\omega t}$. Let $t>0$, then it holds

$$
\begin{align*}
\left\|\frac{S(t) x-x}{t}-(-A x)\right\| & =\left\|S(t)\left[\frac{x-T(t) x}{t}\right]-(-A x)\right\| \tag{2.4}\\
& \leq\|S(t)\|_{o p}\left\|\left[\frac{x-T(t) x}{t}\right]-T(t)(-A x)\right\| \tag{2.5}\\
& \leq\|S(t)\|_{o p}\left[\left\|\frac{x-T(t) x}{t}-(-A x)\right\|+\|T(t)(-A x)-(-A x)\|\right] \tag{2.6}\\
& \leq M e^{\omega t}\left[\left\|\frac{x-T(t) x}{t}-(-A x)\right\|+\|T(t)(-A x)-(-A x)\|\right] . \tag{2.7}
\end{align*}
$$

In the limit $t \rightarrow 0$ we obtain that $-A$ is the generator of S. Note that $\mathcal{D}(A)=\mathcal{D}(-A)$.
c) Since $T(0)=S(0)=$ id we have $U(0)=$ id. By the strong continuity of both S and T, we also know that U is strongly continuous, i.e. $U(t) x \rightarrow x$ for $t \rightarrow 0$. It remains to show the semigroup property. For this purpose, let $s, t \in \mathbb{R}$.
If $s>0, t>0$, or $s<0, t<0$, then the statement is clear. Let $s<0$ and $t>0$. Assume first $t>|s|$. Then it holds

$$
\begin{equation*}
U(t) U(s)=T(t) S(-s)=T(t+s) T(-s) S(-s)=T(t+s)=U(t+s) . \tag{2.8}
\end{equation*}
$$

If $t<|s|$, then we have

$$
\begin{equation*}
U(t) U(s)=T(t) S(-s)=T(t) S(t) S(-t-s)=S(-(t+s))=U(t+s) \tag{2.9}
\end{equation*}
$$

So altogether, U is a C^{0}-group.

Exercise 8.3

Let $T:[0, \infty) \longrightarrow \mathcal{L}\left(L^{2}(\mathbb{R})\right)$ be defined by $T(t) f:=f(t+\cdot)$ for all $t \geq 0$.
a) Show that T is a C^{0}-semigroup of contractions on $L^{2}(\mathbb{R})$.
b) Show that the operator $A f:=f^{\prime}$ on the domain $\mathcal{D}(A):=H^{1}(\mathbb{R})$ is the generator of T.
c) Show the inequality of Landau-Kolmogorov: For every $f \in H^{2}(\mathbb{R})$ it holds

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{L^{2}(\mathbb{R})}^{2} \leq 4\|f\|_{L^{2}(\mathbb{R})}\left\|f^{\prime \prime}\right\|_{L^{2}(\mathbb{R})} \tag{3.1}
\end{equation*}
$$

Proof: Let $X:=L^{2}(\mathbb{R})$.
a) Obviously we have $T(0)=$ id and for $t, s>0$ we have

$$
\begin{equation*}
T(t) T(s) f(x)=T(t) f(t+\cdot)(x)=f(t+s+x)=T(t+s) f(x) \tag{3.2}
\end{equation*}
$$

It remains to show the strong continuity. For this purpose, we first show the continuity on the dense subspace $C_{c}^{\infty}(\mathbb{R})$. Let $f \in C_{c}^{\infty}(\mathbb{R})$, then we have by the fundamental lemma of calculus, Jensen's inequality, and Fubini's theorem

$$
\begin{align*}
\|f-T(t) f\|_{L^{2}(\mathbb{R})}^{2} & =\int_{\mathbb{R}}|f(x)-f(x+t)|^{2} \mathrm{~d} x=\int_{\mathbb{R}}\left|\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} s} f(x+(1-s) t) \mathrm{d} s\right|^{2} \mathrm{~d} x \tag{3.3}\\
& \leq t^{2} \int_{\mathbb{R}} \int_{0}^{1}\left|f^{\prime}(x+(1-s) t)\right|^{2} \mathrm{~d} s \mathrm{~d} x=t^{2}\left\|f^{\prime}\right\|_{L^{2}}^{2} . \tag{3.4}
\end{align*}
$$

In the limit $t \rightarrow 0$ we have $T(t) f \rightarrow f$ in X. Now for arbitrary $f \in X$, we can find $g \in C_{c}^{\infty}(\mathbb{R})$ which approximates f in X. Then we have

$$
\begin{equation*}
\|f-T(t) f\|_{L^{2}(\mathbb{R})} \leq\|f-g\|_{L^{2}(\mathbb{R})}+\|g-T(t) g\|_{L^{2}(\mathbb{R})}+\|T(t) g-T(t) f\|_{L^{2}(\mathbb{R})} \tag{3.5}
\end{equation*}
$$

Using a 3ε argument shows the strong continuity of T. Altogether, T is a C^{0}-semigroup. Since $\|T(t) f\|_{L^{2}(\mathbb{R})}=\|f\|_{L^{2}(\mathbb{R})}$, we have $\|T(t)\|_{o p}=1$ for all $t \geq 0$, so T is a C^{0}-semigroup of contractions.
b) We again focus first on functions $f \in C_{c}^{\infty}(\mathbb{R})$. We know that

$$
\begin{equation*}
\frac{T(t) f(x)-f(x)}{t} \xrightarrow{t \rightarrow 0} f^{\prime}(x) \quad \text { for all } x \in \mathbb{R} \tag{3.6}
\end{equation*}
$$

pointwise. Since f and f^{\prime} are continuous, the difference quotient is bounded on a compact set and by Lebesgue's dominated convergence theorem we have

$$
\begin{equation*}
\frac{T(t) f-f}{t} \xrightarrow{t \rightarrow 0} f^{\prime} \quad \text { in } X \tag{3.7}
\end{equation*}
$$

We now take the closure of $C_{c}^{\infty}(\mathbb{R})$ with respect to the L^{2}-norm, such that the derivative also is in $L^{2}(\mathbb{R})$, which is the Sobolev space $H^{1}(\mathbb{R})$.
c) Using the same arguments as in b), we have $\mathcal{D}\left(A^{2}\right)=H^{2}(\mathbb{R})$. The statement then follows from the fact, that T is semigroup of contractions and Lemma 4.9 (with $M=1$).

Exercise 8.4

Let X be a Banach space. Let T be a C^{0}-semigroup and let $A: \mathcal{D}(A) \longrightarrow X$ be its generator. Show Taylor's formula

$$
\begin{equation*}
T(t) x=x+t A x+\int_{0}^{t}(t-s) T(s) A^{2} x \mathrm{~d} s \quad \text { for all } x \in \mathcal{D}\left(A^{2}\right) \tag{3.1}
\end{equation*}
$$

Proof: Let $x \in \mathcal{D}\left(A^{2}\right)$, then also $x \in \mathcal{D}(A)$. Define the function $h:[0, \infty) \longrightarrow X$ by $h(t):=T(t) x$. We already know from Theorem 4.5 that the map h is differentiable and the derivative is given by $h^{\prime}(t)=T(t) A x$. Since $x \in \mathcal{D}\left(A^{2}\right)$ we can again take a derivative, which results in $h^{\prime \prime}(t)=T(t) A^{2} x$. Using Taylors formula with integral remainder gives

$$
\begin{equation*}
h(t)=h(0)+t h^{\prime}(0)+\int_{0}^{t}(t-s) h^{\prime \prime}(s) \mathrm{d} s=x+t A x+\int_{0}^{t}(t-s) T(s) A^{2} x \mathrm{~d} s \tag{3.2}
\end{equation*}
$$

which was the claim.

