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Exercise 8.1
Let P: R — R be the Poisson kernel, given by P(z) := % L, for all x € R. For t > 0 let

1+22
Py(z) == 1 P(%) be its L'-dilation.

a) Show that P(£) = =Kl for all € € R.

b) Let f € L?(R). Show that the function u(x,t) :== (P; * f)(x) solves the problem

(02 + %) u(x,t) =0 in R x (0, 00), (1.1)
u(z,0) = f(x) for almost all x € R. i

¢) Let T': [0,00) — L%(R) be given by T'(0) = id and T'(t)f := P, * f for all ¢+ > 0. Show that T is
a C%-semigroup on L%(R).

Proof: We denote X := L?(R).

a) Let £ € R and ¢g(¢) = \/%e“ﬂ, then we have

o0
om g(z) = / P / emtTiz | ottt g (1.2)
R 0
1 : o] 1 . [e%S)

_ fsfms] [ f£+wc§} 13
l—l—ix[e 0+1—ixe 0 (1.3)

1 1 l—iz+1+iz
= = = 21 P(x). 1.4
1+ix+1—i:c 1+ 22 mP(z) (1.4)

Since both functions g and P are radially symmetric, we get from Fourier inversion that P= g.

b) First note that by Young’s convolution inequality the convolution is well defined and u € X.
Also note from the dilation theorem of Fourier transforms we get P;(&) = g(t€) for all t > 0
and £ € R. So we get from the product formula of Fourier transforms (in the z variable)
a(t, €) = V2 P,(€) f(£), from which we deduce

FI(0} +02)ul - ,1)] = dFa(t,€) — €2u(t, &) = —€%e 1l f(&) + &2~ f(¢) = 0. (1.5)

Fourier inversion then yields, that u is a solution to the differential equation. The boundary data
is correct since the family (P;); is a Dirac sequence.

c) For t,s > 0 we see
P« Py =F [FIP,« P]] = V2rF e 91l = .. (1.6)

In b) we already clarified that P, * f — f in X (since (F;); is a Dirac sequence). This makes T’
into a C%semigroup. |
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Exercise 8.2
Let X be a Banach space and let T be a C%—semigroup. For every ¢t > 0 let T(¢) be invertible and
T(t)! € L(X).

a) Show that S: [0,00) — £(X) defined by S(t) == T(t)~! is a C°-semigroup.
b) Let A be the generator of T'. Show that —A is the generator of S.
)

c¢) Define U: R — L(X) via

00={ sy §i20 @

Show that U is a C%group.

Proof:

a) Since T'(0) = id we have S(0) = id. For s,t > 0 we have
St+s)=T({t+s) 1 =T(s+t)L = (T(s)T) L =T@)1T(s)" = S(t)S(s). (2.2)

It remains to show the strong continuity. Note that T'(¢) is bijective for every t > 0. Fix s > 1
and let z € X, then there exists y € X such that T'(s)y = x. Then we have for every t < 1

t—0
1Stz — || = |SOTOT (s — t)y = T(s)yl = IT(s — t)y — T(s)yll —= 0 (2.3)
by the continuity of T' (c.f. Lemma 4.3). Altogether, this makes S into a C°-semigroup.

b) Let x € D(A). Since S is a CY—semigroup by a), there exist M > 1 and w > 0 such that
1S()|lop < Me*t. Let ¢ > 0, then it holds

[H5=E ) = s [ - ) (2.4
<18 o | [Z202] — 10y (25

<18 oy [|Z=PO2 ()| + T (- Ax) ~ (-a9)]]  (26)

w1z —T(t)x
< Mevt [Hf . (—Aa:)H + T (~A2) - (—Av)]].  @7)
In the limit ¢ — 0 we obtain that —A is the generator of S. Note that D(A) = D(—A).

¢) Since T'(0) = S(0) = id we have U(0) = id. By the strong continuity of both S and T', we also
know that U is strongly continuous, i.e. U(t)z — x for t — 0. It remains to show the semigroup
property. For this purpose, let s,t € R.

If s >0,t >0, 0rs<0,t <0, then the statement is clear. Let s < 0 and ¢t > 0. Assume first
t > |s|. Then it holds

Ut)U(s) =T(t)S(—s) =T(t+ )T (—s)S(—=s) =T(t+s) =U(t + s). (2.8)
If ¢ < |s|, then we have
Ut)U(s) =T(t)S(=s) =T(t)S(t)S(—t —s) = S(—(t+s)) =U(t + s). (2.9)

So altogether, U is a C°-group. [ |
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Exercise 8.3
Let T': [0,00) — L(L?*(R)) be defined by T'(t)f := f(t+ - ) for all t > 0.

a)
b)

c)

Show that T is a C"—semigroup of contractions on L%(R).
Show that the operator Af := f’ on the domain D(A) := H(R) is the generator of T

Show the inequality of Landau-Kolmogorov: For every f € H?(RR) it holds

17 1 2y < 40F N2y I1F Nl 2o my- (3.1)
(R)

Proof: Let X = L?(R).

2)

Obviously we have T'(0) = id and for ¢,s > 0 we have
TOT(s)f(x) =T@)f(t+ - )(z)=ft+s+z)=T(t+s)f(x). (3.2)

It remains to show the strong continuity. For this purpose, we first show the continuity on the
dense subspace C°(R). Let f € C2°(R), then we have by the fundamental lemma of calculus,
Jensen’s inequality, and Fubini’s theorem

1
IF =T O = [ 15@) = e+ 0Pde= [ | [ Lrera-ana a6

1
<t /R/O '@+ (1= s)t)|* ds dw = £2] f']| 7. (3.4)

In the limit ¢ — 0 we have T'(t)f — f in X. Now for arbitrary f € X, we can find g € C°(R)
which approximates f in X. Then we have

If =T 2wy < 1F = 9gllzw) + lg = T@gllL2ry + 1T(E)g =T fllL2(w)- (3.5)

Using a 3¢ argument shows the strong continuity of 7. Altogether, 7" is a C*-semigroup. Since
| T®) fll2w) = Ifllz2mw), we have [|[T(t)[lop = 1 for all t > 0, so T is a C%semigroup of
contractions.

We again focus first on functions f € C°(R). We know that

T(t)f(x) = f(x) =0

" f(x) for all z € R (3.6)

pointwise. Since f and f’ are continuous, the difference quotient is bounded on a compact set
and by Lebesgue’s dominated convergence theorem we have

Tt f—f =0
t

f in X. (3.7)

We now take the closure of C2°(IR) with respect to the L?norm, such that the derivative also is
in L?(R), which is the Sobolev space H'(R).

Using the same arguments as in b), we have D(A4%) = H?(R). The statement then follows from
the fact, that T" is semigroup of contractions and Lemma 4.9 (with M =1).
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Exercise 8.4
Let X be a Banach space. Let T be a C%—semigroup and let A: D(A) — X be its generator. Show
Taylor’s formula

t
T(t)xr =x + tAz + / (t —s)T(s)A%zds for all x € D(A?). (3.1)
0

Proof: Let x € D(A?), then also z € D(A). Define the function h: [0,00) — X by h(t) == T(t)z.
We already know from Theorem 4.5 that the map h is differentiable and the derivative is given by
R'(t) = T(t)Az. Since € D(A?) we can again take a derivative, which results in h”(t) = T(t)A%x.
Using Taylors formula with integral remainder gives

h(t) = h(0) + th(0) + /t(t —s)h"(s)ds =z + tAz + /t(t —5)T(s) A%z ds, (3.2)
0 0

which was the claim. |



