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Exercise 8.1
Let P : R −→ R be the Poisson kernel, given by P (x) := 1

π
1

1+x2
for all x ∈ R. For t > 0 let

Pt(x) := 1
t P (xt ) be its L1-dilation.

a) Show that P̂ (ξ) = 1√
2π
e−|ξ| for all ξ ∈ R.

b) Let f ∈ L2(R). Show that the function u(x, t) := (Pt ∗ f)(x) solves the problem{
(∂2t + ∂2x)u(x, t) = 0 in R× (0,∞),

u(x, 0) = f(x) for almost all x ∈ R. (1.1)

c) Let T : [0,∞) −→ L2(R) be given by T (0) = id and T (t)f := Pt ∗ f for all t > 0. Show that T is
a C0–semigroup on L2(R).

Proof: We denote X := L2(R).

a) Let ξ ∈ R and g(ξ) = 1√
2π
e−|ξ|, then we have

2π ĝ(x) =

∫
R

e−|ξ|−ixξ dξ =

∫ ∞
0

e−ξ−ixξ + e−ξ+ixξ dξ (1.2)

= − 1

1 + ix

[
e−ξ−ixξ

]∞
0

+
1

1− ix

[
e−ξ+ixξ

]∞
0

(1.3)

=
1

1 + ix
+

1

1− ix
=

1− ix+ 1 + ix

1 + x2
= 2πP (x). (1.4)

Since both functions g and P are radially symmetric, we get from Fourier inversion that P̂ = g.

b) First note that by Young’s convolution inequality the convolution is well defined and u ∈ X.
Also note from the dilation theorem of Fourier transforms we get P̂t(ξ) = g(tξ) for all t > 0
and ξ ∈ R. So we get from the product formula of Fourier transforms (in the x variable)
û(t, ξ) =

√
2π P̂t(ξ) f̂(ξ), from which we deduce

F [(∂2t + ∂2x)u( · , t)] = ∂2t û(t, ξ)− ξ2û(t, ξ) = −ξ2e−t|ξ| f̂(ξ) + ξ2e−t|ξ| f̂(ξ) = 0. (1.5)

Fourier inversion then yields, that u is a solution to the differential equation. The boundary data
is correct since the family (Pt)t is a Dirac sequence.

c) For t, s > 0 we see

Pt ∗ Ps = F−1[F [Pt ∗ Ps]] =
√

2πF−1[e−(t+s) | · |] = Pt+s. (1.6)

In b) we already clarified that Pt ∗ f → f in X (since (Pt)t is a Dirac sequence). This makes T
into a C0–semigroup. �
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Exercise 8.2
Let X be a Banach space and let T be a C0–semigroup. For every t > 0 let T (t) be invertible and
T (t)−1 ∈ L(X).

a) Show that S : [0,∞) −→ L(X) defined by S(t) := T (t)−1 is a C0-semigroup.

b) Let A be the generator of T . Show that −A is the generator of S.

c) Define U : R −→ L(X) via

U(t) :=

{
T (t) if t ≥ 0,

S(−t) if t < 0.
(2.1)

Show that U is a C0–group.

Proof:

a) Since T (0) = id we have S(0) = id. For s, t > 0 we have

S(t+ s) = T (t+ s)−1 = T (s+ t)−1 = (T (s)T (t))−1 = T (t)−1T (s)−1 = S(t)S(s). (2.2)

It remains to show the strong continuity. Note that T (t) is bijective for every t ≥ 0. Fix s > 1
and let x ∈ X, then there exists y ∈ X such that T (s)y = x. Then we have for every t < 1

‖S(t)x− x‖ = ‖S(t)T (t)T (s− t)y − T (s)y‖ = ‖T (s− t)y − T (s)y‖ t→0−−→ 0 (2.3)

by the continuity of T (c.f. Lemma 4.3). Altogether, this makes S into a C0–semigroup.

b) Let x ∈ D(A). Since S is a C0–semigroup by a), there exist M ≥ 1 and ω ≥ 0 such that
‖S(t)‖op ≤Meωt. Let t > 0, then it holds∥∥∥S(t)x− x

t
− (−Ax)

∥∥∥ =
∥∥∥S(t)

[x− T (t)x

t

]
− (−Ax)

∥∥∥ (2.4)

≤ ‖S(t)‖op
∥∥∥[x− T (t)x

t

]
− T (t)(−Ax)

∥∥∥ (2.5)

≤ ‖S(t)‖op
[∥∥∥x− T (t)x

t
− (−Ax)

∥∥∥+ ‖T (t)(−Ax)− (−Ax)‖
]

(2.6)

≤Meωt
[∥∥∥x− T (t)x

t
− (−Ax)

∥∥∥+ ‖T (t)(−Ax)− (−Ax)‖
]
. (2.7)

In the limit t→ 0 we obtain that −A is the generator of S. Note that D(A) = D(−A).

c) Since T (0) = S(0) = id we have U(0) = id. By the strong continuity of both S and T , we also
know that U is strongly continuous, i.e. U(t)x→ x for t→ 0. It remains to show the semigroup
property. For this purpose, let s, t ∈ R.

If s > 0, t > 0, or s < 0, t < 0, then the statement is clear. Let s < 0 and t > 0. Assume first
t > |s|. Then it holds

U(t)U(s) = T (t)S(−s) = T (t+ s)T (−s)S(−s) = T (t+ s) = U(t+ s). (2.8)

If t < |s|, then we have

U(t)U(s) = T (t)S(−s) = T (t)S(t)S(−t− s) = S(−(t+ s)) = U(t+ s). (2.9)

So altogether, U is a C0–group. �
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Exercise 8.3
Let T : [0,∞) −→ L(L2(R)) be defined by T (t)f := f(t+ · ) for all t ≥ 0.

a) Show that T is a C0–semigroup of contractions on L2(R).

b) Show that the operator Af := f ′ on the domain D(A) := H1(R) is the generator of T .

c) Show the inequality of Landau–Kolmogorov: For every f ∈ H2(R) it holds

‖f ′‖2L2(R) ≤ 4 ‖f‖L2(R) ‖f ′′‖L2(R). (3.1)

Proof: Let X := L2(R).

a) Obviously we have T (0) = id and for t, s > 0 we have

T (t)T (s)f(x) = T (t)f(t+ · )(x) = f(t+ s+ x) = T (t+ s)f(x). (3.2)

It remains to show the strong continuity. For this purpose, we first show the continuity on the
dense subspace C∞c (R). Let f ∈ C∞c (R), then we have by the fundamental lemma of calculus,
Jensen’s inequality, and Fubini’s theorem

‖f − T (t)f‖2L2(R) =

∫
R

|f(x)− f(x+ t)|2 dx =

∫
R

∣∣∣ ∫ 1

0

d

ds
f(x+ (1− s)t) ds

∣∣∣2 dx (3.3)

≤ t2
∫
R

∫ 1

0
|f ′(x+ (1− s)t)|2 ds dx = t2‖f ′‖2L2 . (3.4)

In the limit t→ 0 we have T (t)f → f in X. Now for arbitrary f ∈ X, we can find g ∈ C∞c (R)
which approximates f in X. Then we have

‖f − T (t)f‖L2(R) ≤ ‖f − g‖L2(R) + ‖g − T (t)g‖L2(R) + ‖T (t)g − T (t)f‖L2(R). (3.5)

Using a 3ε argument shows the strong continuity of T . Altogether, T is a C0–semigroup. Since
‖T (t)f‖L2(R) = ‖f‖L2(R), we have ‖T (t)‖op = 1 for all t ≥ 0, so T is a C0–semigroup of
contractions.

b) We again focus first on functions f ∈ C∞c (R). We know that

T (t)f(x)− f(x)

t

t→0−−→ f ′(x) for all x ∈ R (3.6)

pointwise. Since f and f ′ are continuous, the difference quotient is bounded on a compact set
and by Lebesgue’s dominated convergence theorem we have

T (t)f − f
t

t→0−−→ f ′ in X. (3.7)

We now take the closure of C∞c (R) with respect to the L2–norm, such that the derivative also is
in L2(R), which is the Sobolev space H1(R).

c) Using the same arguments as in b), we have D(A2) = H2(R). The statement then follows from
the fact, that T is semigroup of contractions and Lemma 4.9 (with M = 1).
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Exercise 8.4
Let X be a Banach space. Let T be a C0–semigroup and let A : D(A) −→ X be its generator. Show
Taylor’s formula

T (t)x = x+ tAx+

∫ t

0
(t− s)T (s)A2x ds for all x ∈ D(A2). (3.1)

Proof: Let x ∈ D(A2), then also x ∈ D(A). Define the function h : [0,∞) −→ X by h(t) := T (t)x.
We already know from Theorem 4.5 that the map h is differentiable and the derivative is given by
h′(t) = T (t)Ax. Since x ∈ D(A2) we can again take a derivative, which results in h′′(t) = T (t)A2x.
Using Taylors formula with integral remainder gives

h(t) = h(0) + t h′(0) +

∫ t

0
(t− s)h′′(s) ds = x+ tAx+

∫ t

0
(t− s)T (s)A2x ds, (3.2)

which was the claim. �
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