Functional Analysis 2 - Exercise Sheet 7

Winter term 2019/20, University of Heidelberg

Exercise 7.1

Let $H=L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$ and $\mathcal{F}: H \longrightarrow H$ be the Fourier transform. Show that $\sigma_{p}(\mathcal{F})=\{ \pm 1, \pm \mathbf{i}\}$.
Hint: Apply the Fourier transform several times to the eigenvalue equation. Compute the Fourier transforms of functions of the form $x e^{-x^{2}},\left(1+x^{2}\right) e^{-x^{2}}$ and $x\left(1+x^{2}\right) e^{-x^{2}}$.

Proof: The eigenvalue equation reads $\mathcal{F} u=\lambda u$ for some $u \in H$ and $\lambda \in \mathbb{C}$. Applying \mathcal{F} three times again results in $u=\lambda^{4} u$ and therefore $\sigma_{p} \subset\{ \pm 1, \pm \mathbf{i}\}$. It remains to find an eigenvector for each potential eigenvalue.
Define $\mathcal{G}(x):=e^{-\frac{1}{2}|x|^{2}}$, then we know that $\mathcal{F G}=\mathcal{G}$ and thus $1 \in \sigma_{p}$. We also find for $j \in\{1, \ldots, n\}$

$$
\begin{equation*}
\partial_{j} \mathcal{G}(x)=-x_{j} \mathcal{G}(x), \quad \partial_{j}^{2} \mathcal{G}(x)=\left(x_{j}^{2}-1\right) \mathcal{G}(x), \quad \partial_{j}^{3} \mathcal{G}(x)=\left(3 x_{j}-x_{j}^{3}\right) \mathcal{G}(x) . \tag{1.1}
\end{equation*}
$$

We can use this information to construct eigenvectors. We get

$$
\begin{align*}
\mathcal{F}\left[x_{j} \mathcal{G}(x)\right](\xi) & =\mathbf{i} \partial_{j} \mathcal{F} \mathcal{G}(\xi)=-\mathbf{i} \xi_{j} \mathcal{G}(\xi) & & \Longrightarrow-\mathbf{i} \in \sigma_{p}(\mathcal{F}), \tag{1.2}\\
\mathcal{F}\left[\left(-2+x_{j}^{2}\right) \mathcal{G}(x)\right](\xi) & =-2 \mathcal{F} \mathcal{G}(\xi)-\partial_{j}^{2} \mathcal{F} \mathcal{G}(\xi)=-\left(-2+\xi_{j}^{2}\right) \mathcal{G}(\xi) & & \Longrightarrow-1 \in \sigma_{p}(\mathcal{F}), \tag{1.3}\\
\mathcal{F}\left[\left(2 x_{j}-x_{j}^{3}\right) \mathcal{G}(x)\right](\xi) & =\mathbf{i}\left(2 \xi_{j}+\xi_{j}^{3}\right) \mathcal{G}(\xi) & & \Longrightarrow \mathbf{i} \in \sigma_{p}(\mathcal{F}) . \tag{1.4}
\end{align*}
$$

Altogether we have shown $\sigma_{p}=\{ \pm 1, \pm \mathbf{i}\}$.

Exercise 7.2

Let $j \in\{1, \ldots, n\}$ and let $f \in L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$. Show that there exists a unique solution $u \in H^{1}\left(\mathbb{R}^{n}, \mathbb{C}\right)$ such that $\left(\mathbf{i} \pm \mathbf{i} \partial_{j}\right) u=f$ almost everywhere in \mathbb{R}^{n}.

Proof: Apply the Fourier transform to both sides to find

$$
\begin{equation*}
\hat{u}(\xi)=\frac{\hat{f}(\xi)}{\mathbf{i} \pm \xi_{j}} \tag{2.1}
\end{equation*}
$$

Since $\xi \in \mathbb{R}^{n}$, the right hand side will never be zero in the denominator and remains an L^{2}-function by Hölders inequality. Fourier inversion then yields the unique solution.

Exercise 7.3

Let X be a Banach space and $T \in \mathcal{L}(X)$. Let $f: \mathbb{R}^{n} \longrightarrow X$ be Bochner integrable. Show that $T f$ is a Bochner integrable function and that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} T f(x) \mathrm{d} x=T\left(\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x\right) \tag{3.1}
\end{equation*}
$$

Hint: A quick repetition of the Bochner integration theory: A function $g: \mathbb{R}^{n} \longrightarrow X$ is called simple if there exist finitely many Lebesgue measurable sets $\left\{A_{j}\right\}_{j}$ with $\left|A_{j}\right|<\infty$ and elements $\left\{\alpha_{j}\right\}_{j} \subset X$, such that $g=\sum_{j} \alpha_{j} \chi_{A_{j}}$. For simple functions we define the Bochner integral

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} g(x) \mathrm{d} x:=\sum_{j} \alpha_{j}\left|A_{j}\right| \tag{3.2}
\end{equation*}
$$

A function $h: \mathbb{R}^{n} \longrightarrow X$ is called Bochner measurable if there exists a sequence $\left(g_{k}\right)_{k}$ of simple functions, such that $g_{k} \rightarrow h$ pointwise almost everywhere. A Bochner measurable function $f: \mathbb{R}^{n} \longrightarrow X$ is called Bochner integrable if there exists a sequence of simple functions $\left(g_{k}\right)_{k}$, such that $g_{k} \rightarrow f$ almost everywhere and

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left\|g_{i}(x)-g_{j}(x)\right\| \mathrm{d} x \rightarrow 0 \quad \text { as } i, j \rightarrow \infty \tag{3.3}
\end{equation*}
$$

We then define the Bochner integral of f via

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x:=\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{k}(x) \mathrm{d} x \tag{3.4}
\end{equation*}
$$

In order to show the statement: consider first simple functions and then go to the limit.

Proof: Let us first show the statement for simple functions, then we know that there exist finitely many measurable sets $\left\{A_{j}\right\}_{j}$ with $\left|A_{j}\right|<\infty$ and $\left\{\alpha_{j}\right\}_{j} \subset X$ such that $f=\sum_{j} \alpha_{j} \chi_{A_{j}}$. Then we have $T f=\sum_{j} T \alpha_{j} \chi_{A_{j}}$ and it holds

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} T f(x) \mathrm{d} x=\sum_{j} T \alpha_{j}\left|A_{j}\right|=T \sum_{j} \alpha_{j}\left|A_{j}\right|=T\left(\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x\right) \tag{3.5}
\end{equation*}
$$

Now, let f be Bochner integrable and let $\left(f_{j}\right)_{j}$ be a sequence of simple functions, such that $f_{j} \rightarrow f$ almost everywhere and $\int_{\mathbb{R}^{n}}\left\|f_{i}(x)-f_{j}(x)\right\| \mathrm{d} x \rightarrow 0$ as $i, j \rightarrow \infty$. Then $\left(T f_{j}\right)_{j}$ is a sequence of simple function and we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left\|T f_{i}(x)-T f_{j}(x)\right\| \mathrm{d} x \leq\|T\|_{\mathrm{op}} \int_{\mathbb{R}^{n}}\left\|f_{i}(x)-f_{j}(x)\right\| \mathrm{d} x \rightarrow 0 \quad \text { as } i, j \rightarrow \infty \tag{3.6}
\end{equation*}
$$

By continuity of T, it also holds $T f_{j} \rightarrow T f$ almost everywhere, so $T f$ is Bochner integrable and it holds

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} T f(x) \mathrm{d} x=\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{n}} T f_{j}(x) \mathrm{d} x \stackrel{(3.5)}{=} T\left(\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{n}} f_{j}(x) \mathrm{d} x\right)=T\left(\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x\right) \tag{3.7}
\end{equation*}
$$

This was the claim.

