Functional Analysis 2 - Exercise Sheet 5

Winter term 2019/20, University of Heidelberg

Exercise 5.1

Let H be a separable Hilbert space and $A \in \mathcal{J}_{2}(H)$. Show that A is a compact operator.
Hint: Find an approximation of finite-rank operators.

Proof: Let $\left(\psi_{k}\right)_{k} \subset H$ be a orthonormal basis, then we know that

$$
\begin{equation*}
\operatorname{Tr}\left(|A|^{2}\right)=\sum_{k \in \mathbb{N}}\left\|A \psi_{k}\right\|^{2}<\infty \tag{1.1}
\end{equation*}
$$

For $N \in \mathbb{N}$ we define now the operator $A_{N} \in \mathcal{L}(H)$ via

$$
\begin{equation*}
A_{N} x:=\sum_{k=1}^{N}\left(\psi_{k}, x\right) A \psi_{k} \quad \text { for all } x \in H \tag{1.2}
\end{equation*}
$$

The operator A_{N} is a finite rank operator for all $n \in \mathbb{N}$ and therefore compact. Moreover we have for every $x \in H$

$$
\begin{align*}
\left\|A x-A_{N} x\right\| & \leq \sum_{k=N+1}^{\infty}\left|\left(\psi_{k}, x\right)\right|\left\|A \psi_{k}\right\| \tag{1.3}\\
& \leq\left(\sum_{k=N+1}^{\infty}\left|\left(\psi_{k}, x\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=N+1}^{\infty}\left\|A \psi_{k}\right\|^{2}\right)^{\frac{1}{2}} \tag{1.4}\\
& \leq\|x\|\left(\sum_{k=N+1}^{\infty}\left\|A \psi_{k}\right\|^{2}\right)^{\frac{1}{2}} . \tag{1.5}
\end{align*}
$$

In total we get

$$
\begin{equation*}
\left\|A-A_{N}\right\|_{o p} \leq\left(\sum_{k=N+1}^{\infty}\left\|A \psi_{k}\right\|^{2}\right)^{\frac{1}{2}} \xrightarrow{N \rightarrow \infty} 0 . \tag{1.6}
\end{equation*}
$$

So we found an approximation of A of finite rank operators. Using Proposition 1.26 we obtain that A is a compact operator.

Exercise 5.2

Let X be a Banach space and let $K \in \mathcal{L}(X)$ be a compact operator. Let $U \subset X$ be open, such that $0 \in U$ and let $N: U \longrightarrow X$ such that

$$
\begin{equation*}
\frac{\|N x\|}{\|x\|} \longrightarrow 0 \quad \text { for }\|x\| \rightarrow 0 \tag{2.1}
\end{equation*}
$$

Assume there exists a $\lambda \in \mathbb{K} \backslash\{0\}$ and a sequence $\left(\lambda_{k}\right)_{k} \subset \mathbb{K}$ and $\left(x_{k}\right)_{k} \subset U$ with the following properties:
a) $x_{k} \neq 0$ for all $k \in \mathbb{N}$ and $x_{k} \rightarrow 0$ as $k \rightarrow \infty$.
b) $\lambda_{k} \neq \lambda$ for all $k \in \mathbb{N}$ and $\lambda_{k} \rightarrow \lambda$ as $k \rightarrow \infty$.
c) $\lambda_{k} x_{k}=K x_{k}+N x_{k}$ for all $k \in \mathbb{N}$.

Show that λ is an eigenvalue of K.
Hint: Assume that λ is not an eigenvalue and use theorems of Fredholm operators to obtain a suitable resolvent. Find a representation for x_{k} in terms of that resolvent and lead this to a contradiction.

Proof: Assume λ is not an eigenvalue of K. Since K is a compact operator we know from Theorem 2.3 that id $-\frac{1}{\lambda} K$ is a Fredholm operator and since λ is not an eigenvalue we know that id $-\frac{1}{\lambda} K$ is injective. Since the index is 0 we know that this operator is also surjective and therefore the inverse $R:=\left(\text { id }-\frac{1}{\lambda} K\right)^{-1} \in \mathcal{L}(X)$. We obtain

$$
\begin{equation*}
x_{k}=\left(\frac{1}{\lambda_{k}}-\frac{1}{\lambda}\right) R K x_{k}+\frac{1}{\lambda_{k}} R N x_{k} . \tag{2.2}
\end{equation*}
$$

We take the modulus and divide by $\left\|x_{k}\right\| \neq 0$ and obtain

$$
\begin{equation*}
1 \lesssim\left|\frac{1}{\lambda_{k}}-\frac{1}{\lambda}\right|+\frac{\left\|N x_{k}\right\|}{\left\|x_{k}\right\|} \longrightarrow 0 \quad \text { for } k \rightarrow \infty \tag{2.3}
\end{equation*}
$$

A contradiction. So λ is an eigenvalue of K.

Exercise 5.3

Let H be a separable Hilbert space and let $A \in \mathcal{L}(H)$ be a compact and self-adjoint operator. Let $a^{*} \geq 0$ be the biggest eigenvalue of A and $a_{*} \leq 0$ be the smallest eigenvalue of A.
a) Show that one of the two equalities $a^{*}=\|A\|$ or $a_{*}=-\|A\|$ holds.
b) Let $B \in \mathcal{L}(H)$ be another compact and self-adjoint operator. Let $b^{*} \geq 0$ be the biggest eigenvalue of B and $b_{*} \leq 0$ be the smallest eigenvalue of B. Let $\lambda^{*} \geq 0$ be the biggest eigenvalue of $A+B$ and $\lambda_{*} \leq 0$ be the smallest eigenvalue of $A+B$. Show that

$$
\begin{equation*}
\lambda^{*} \leq a^{*}+b^{*}, \quad \lambda_{*} \geq a_{*}+b_{*} \tag{3.1}
\end{equation*}
$$

Proof:

a) From the spectral theorem we know that $\sigma(A) \backslash\{0\} \subset \sigma_{p}(A)$. From Theorem 3.1 we know that $A=0$ if $a^{*}=a_{*}=0$, so without loss of generality we can assume that a^{*} or a_{*} are not trivial. We also know that

$$
\begin{equation*}
a_{*}=\inf _{\|x\|=1}(x, A x), \quad a^{*}=\sup _{\|x\|=1}(x, A x) \tag{3.2}
\end{equation*}
$$

Using Exercise 3.3 we know that

$$
\begin{equation*}
\max \left\{a^{*},\left|a_{*}\right|\right\}=\sup _{\lambda \in \sigma(A)}|\lambda|=\sup _{\|x\|=1}|(x, A x)|=\|A\|, \tag{3.3}
\end{equation*}
$$

from which the claim follows.
b) If $A+B=0$ then the statement is trivial. Otherwise we get from Theorem 3.1

$$
\begin{equation*}
\lambda_{*}=\inf _{\|x\|=1}(x, A x)+(x, B x) \geq a_{*}+b_{*}, \tag{3.4}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\lambda^{*}=\sup _{\|x\|=1}(x, A x)+(x, B x) \leq a^{*}+b^{*} \tag{3.5}
\end{equation*}
$$

So the claim holds.

Exercise 5.4

Let $\mathcal{H}:=L^{2}((0,1), \mathbb{C})$ and $\mathcal{D}(A):=\left\{f \in H^{2}((0,1), \mathbb{C}): f(0)=f(1), f^{\prime}(0)=f^{\prime}(1)\right\}$. Let $A: \mathcal{D}(A) \longrightarrow$ \mathcal{H} be the periodic Laplace operator (see Example 1.21). Determine all eigenvalues and eigenfunctions of A. Do these eigenfunctions form an orthonormal basis of \mathcal{H} ? Justify your answer.

Proof: We need to find solutions of the following boundary value problem

$$
\left\{\begin{align*}
u^{\prime \prime}(x) & =\lambda u(x) \tag{4.1a}\\
u(0) & =u(1) \\
u^{\prime}(0) & =u^{\prime}(1)
\end{align*} \quad \text { for all } x \in(0,1)\right.
$$

where $\lambda \in \mathbb{C}$ takes the role of an eigenvalue. Using Example 1.21, we know that $\lambda \in \mathbb{R}_{+}$since A is a symmetric operator and positive. Solutions to (4.1a) are given by

$$
\begin{equation*}
u(x)=a \sin (\sqrt{\lambda} x)+b \cos (\sqrt{\lambda} x)+k \quad \text { for all } x \in(0,1) \tag{4.2}
\end{equation*}
$$

for parameters $a, b, k \in \mathbb{C}$. In order to match the boundary conditions (4.1b) and (4.1c) we need to choose a and b appropriately. For this prupose we define

$$
\begin{equation*}
s:=\sin (\sqrt{\lambda}), \quad c:=\cos (\sqrt{\lambda}) \tag{4.3}
\end{equation*}
$$

Assuming $s \neq 0$ or equivalently $c \neq 1$, which corresponds to $\lambda=4 \pi^{2} j^{2}$ for some $j \in \mathbb{N}$, from (4.1b) we get

$$
\begin{equation*}
b \stackrel{!}{=} a s+b c \quad \Longleftrightarrow \quad b=a \frac{s}{1-c}, \tag{4.4}
\end{equation*}
$$

and from (4.1c) we get

$$
\begin{equation*}
\sqrt{\lambda} a \stackrel{!}{=} \sqrt{\lambda} a c-\sqrt{\lambda} b s \quad \Longleftrightarrow \quad b=a \frac{c-1}{s} \tag{4.5}
\end{equation*}
$$

Combining (4.4) and (4.5) we obtain

$$
\begin{align*}
\frac{c-1}{s}=\frac{s}{1-c} & \Longleftrightarrow-(1-c)^{2}=s^{2} \tag{4.6}\\
& \Longleftrightarrow-1+2 c=1 \tag{4.7}\\
& \Longleftrightarrow c=1 \tag{4.8}
\end{align*}
$$

$$
\begin{equation*}
\Longleftrightarrow \quad \lambda=4 \pi^{2} j^{2} \quad \text { for } j \in \mathbb{Z} \tag{4.9}
\end{equation*}
$$

So in total, we get the eigenvalues $\lambda_{j}=4 \pi^{2} j^{2}$ for all $j \in \mathbb{Z}$ with corresponding eigenfunctions

$$
\begin{equation*}
u_{j}(x)=a \sin (2 \pi j x)+b \cos (2 \pi j x)+k \quad \text { for all } x \in(0,1) \tag{4.10}
\end{equation*}
$$

where $a, b, k \in \mathbb{C}$ are arbitrary parameters (which means that every eigenspace has dimension 3 , except for $j=0$, for which the dimension is 1).
Setting $a=\mathbf{i}, b=1$ and $k=0$, we obtain for every $j \in \mathbb{Z}$ the eigenfunction $u_{j}(x)=e^{2 \pi \mathbf{i} j x}$. From analysis, we know that $\operatorname{span}\left\{x \longmapsto e^{2 \pi \mathbf{i} j x}\right\}_{j \in \mathbb{Z}}$ is dense in \mathcal{H} (Fourier series), so we can extract an orthonormal basis.

Exercise 5.5

Let $\mathcal{H}:=L^{2}((0,1), \mathbb{C})$. Define the operator

$$
\begin{equation*}
A u(x):=\int_{0}^{x} u(y) \mathrm{d} y \quad \text { for all } u \in \mathcal{H} \tag{5.1}
\end{equation*}
$$

a) Show that $A: \mathcal{H} \longrightarrow \mathcal{H}$ is a compact operator.
b) Determine $\sigma_{p}(A)$ and $\sigma(A)$.
c) Is A a self-adjoint operator? Justify your answer.

Hint: You can use compact embedding theorems from the theory of Sobolev spaces.

Proof:

a) We first want to show, that $A \in \mathcal{L}(\mathcal{H})$. Linearity is trivial, so it remains to show continuity. Let $u \in \mathcal{H}$, then we have with the help of Jensen's inequality

$$
\begin{equation*}
\|A u\|^{2}=\int_{0}^{1}\left|\int_{0}^{x} u(y) \mathrm{d} y\right|^{2} \mathrm{~d} x \leq \int_{0}^{1} x \int_{0}^{x}|u(y)|^{2} \mathrm{~d} y \mathrm{~d} x \leq\|u\|^{2} \tag{5.2}
\end{equation*}
$$

So $A: \mathcal{H} \longrightarrow \mathcal{H}$ is well-defined and continuous.
We now claim that $v:=A u \in H^{1}((0,1), \mathbb{C})$ and $v^{\prime}=u$. Indeed, by density we find a sequence $\left(u_{k}\right)_{k} \subset C_{c}^{\infty}((0,1), \mathbb{C})$, such that $u_{k} \rightarrow u$ in \mathcal{H}. Since A is continuous, we find that $v_{k}:=A u_{k} \rightarrow v$. By the fundamental theorem of calculus we have $\left(v_{k}\right)_{k} \subset C^{\infty}((0,1), \mathbb{C})$. Let $\varphi \in C_{c}^{\infty}((0,1), \mathbb{C})$, then we have by the fundamental theorem of calculus

$$
\begin{equation*}
\int_{0}^{1} v_{k}(x) \varphi^{\prime}(x) \mathrm{d} x=-\int_{0}^{1} v_{k}^{\prime}(x) \varphi(x) \mathrm{d} x=-\int_{0}^{1} u_{k}(x) \varphi(x) \mathrm{d} x . \tag{5.3}
\end{equation*}
$$

In the limit we find that u is the weak derivative of v. Since $u, v \in \mathcal{H}$, we have $v \in H^{1}((0,1), \mathbb{C})$. Using the Sobolev embedding theorem, we know that $H^{1}((0,1), \mathbb{C})$ is compactly embedded in \mathcal{H}, so A is a compact operator.
b) We first want to determine $\sigma_{p}(A)$. Let $\lambda \in \mathbb{C}$. In the case $\lambda=0$ we are looking for a solution $u \in \mathcal{H}$ such that

$$
\begin{equation*}
\int_{0}^{x} u(y) \mathrm{d} y=0 \quad \text { for almost all } x \in(0,1) \tag{5.4}
\end{equation*}
$$

This can only be the case if $u=0$ almost everywhere. So $\operatorname{ker}(A)=\{0\}$ and thus $0 \notin \sigma_{p}(A)$.
Now let $\lambda \neq 0$ take the role of a potential eigenvalue, so we are looking for a solution

$$
\begin{equation*}
\int_{0}^{x} u(y) \mathrm{d} y=\lambda u(x) \quad \text { for almost all } x \in(0,1) \tag{5.5}
\end{equation*}
$$

Keep in mind that from this condition it follows that $u \in H^{1}((0,1), \mathbb{C}) \subset C^{0}((0,1), \mathbb{C})$ since the left hand side is in the Sobolev space (see computations from a)). So boundary values are well defined. An equivalent formulation of (5.5) is

$$
\left\{\begin{align*}
u^{\prime}(x) & =\frac{1}{\lambda} u(x) \tag{5.6a}\\
u(0) & =0 .
\end{align*} \quad \text { for almost all } x \in(0,1),\right.
$$

The only solutions to this equation is given by $u=0$ almost everywhere. So $\operatorname{ker}(A-\lambda i d)=\{0\}$ and it follows that $\sigma_{p}(A)=\emptyset$.
Since A is a compact operator we already know that $0 \in \sigma(A)$. We claim that $\sigma(A)=\{0\}$ and in order to show this, we compute the spectral radius of the operator. Using Exercise 1.4 we know that

$$
\begin{equation*}
\sup _{\lambda \in \sigma(A)}|\lambda|=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{\frac{1}{k}} \tag{5.7}
\end{equation*}
$$

so we compute A^{k} for all $k \in \mathbb{N}$. Via induction ${ }^{1}$ we get

$$
\begin{equation*}
A^{k} u(x)=\frac{1}{(k-1)!} \int_{0}^{x}(x-y)^{k-1} u(y) \mathrm{d} y \tag{5.8}
\end{equation*}
$$

and similar to the continuity of A we obtain $\|A\|_{o p} \leq \frac{1}{(k-1)!}$. From this we deduce that

$$
\begin{equation*}
\sup _{\lambda \in \sigma(A)}|\lambda|=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{\frac{1}{k}}=0 \tag{5.9}
\end{equation*}
$$

and thus $\sigma(A)=\{0\}$.
c) A is not self-adjoint because otherwise it would have an eigenvalue (see Theorem 3.1).

[^0]
Exercise 5.6

Let H be a separable Hilbert space and $A \in \mathcal{L}(H)$ be self-adjoint. Let $N \in \mathbb{N} \cup\{\infty\}$. Show that there exists a decomposition

$$
\begin{equation*}
H=\bigoplus_{n=1}^{N} H_{n} \tag{6.1}
\end{equation*}
$$

with subspaces $H_{n} \subset H$ for every $n \in\{1, \ldots, N\}$, such that:
a) For every $n \in\{1, \ldots, N\}$ the space H_{n} is A invariant, i.e. for $x \in H_{n}$ we have $A x \in H_{n}$.
b) For every $n \in\{1, \ldots, N\}$ there exists $y_{n} \in H_{n}$, such that y_{n} is cyclic for the restriction $\left.A\right|_{H_{n}}$, i.e.

$$
\begin{equation*}
H_{n}=\overline{\left\{f(A) y_{n}: f \in C^{0}(\sigma(A))\right\}} \tag{6.2}
\end{equation*}
$$

Proof: Let $\left\{\mathbf{e}_{k}\right\}_{k \in \mathbb{N}} \subset H$ be an orthonormal basis (possible by separability of H). Define the spaces

$$
\begin{equation*}
E_{n}:=\operatorname{span}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\} \quad \text { for all } n \in \mathbb{N} \tag{6.3}
\end{equation*}
$$

[^0]: ${ }^{1}$ The induction requires the integration by parts formula, but similar to (5.3) we obtain that we can use it.

