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Exercise 5.1
Let H be a separable Hilbert space and A ∈ J2(H). Show that A is a compact operator.

Hint: Find an approximation of finite–rank operators.

Proof: Let (ψk)k ⊂ H be a orthonormal basis, then we know that

Tr(|A|2) =
∑
k∈N
‖Aψk‖2 <∞. (1.1)

For N ∈ N we define now the operator AN ∈ L(H) via

ANx :=
N∑
k=1

(ψk, x)Aψk for all x ∈ H. (1.2)

The operator AN is a finite rank operator for all n ∈ N and therefore compact. Moreover we have for
every x ∈ H

‖Ax−ANx‖ ≤
∞∑

k=N+1

|(ψk, x)| ‖Aψk‖

≤
( ∞∑
k=N+1

|(ψk, x)|2
) 1

2
( ∞∑
k=N+1

‖Aψk‖2
) 1

2

≤ ‖x‖
( ∞∑
k=N+1

‖Aψk‖2
) 1

2
.

(1.3)

(1.4)

(1.5)

In total we get

‖A−AN‖op ≤
( ∞∑
k=N+1

‖Aψk‖2
) 1

2 N→∞−−−−→ 0. (1.6)

So we found an approximation of A of finite rank operators. Using Proposition 1.26 we obtain that A
is a compact operator. �
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Exercise 5.2
Let X be a Banach space and let K ∈ L(X) be a compact operator. Let U ⊂ X be open, such that
0 ∈ U and let N : U −→ X such that

‖Nx‖
‖x‖

−→ 0 for ‖x‖ → 0. (2.1)

Assume there exists a λ ∈ K \ {0} and a sequence (λk)k ⊂ K and (xk)k ⊂ U with the following
properties:

a) xk 6= 0 for all k ∈ N and xk → 0 as k →∞.

b) λk 6= λ for all k ∈ N and λk → λ as k →∞.

c) λkxk = Kxk +Nxk for all k ∈ N.

Show that λ is an eigenvalue of K.

Hint: Assume that λ is not an eigenvalue and use theorems of Fredholm operators to obtain a suitable
resolvent. Find a representation for xk in terms of that resolvent and lead this to a contradiction.

Proof: Assume λ is not an eigenvalue of K. Since K is a compact operator we know from Theorem
2.3 that id− 1

λK is a Fredholm operator and since λ is not an eigenvalue we know that id− 1
λK is

injective. Since the index is 0 we know that this operator is also surjective and therefore the inverse
R := (id− 1

λK)−1 ∈ L(X). We obtain

xk =
( 1

λk
− 1

λ

)
RKxk +

1

λk
RNxk. (2.2)

We take the modulus and divide by ‖xk‖ 6= 0 and obtain

1 .
∣∣∣ 1

λk
− 1

λ

∣∣∣+
‖Nxk‖
‖xk‖

−→ 0 for k →∞. (2.3)

A contradiction. So λ is an eigenvalue of K. �
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Exercise 5.3
Let H be a separable Hilbert space and let A ∈ L(H) be a compact and self–adjoint operator. Let
a∗ ≥ 0 be the biggest eigenvalue of A and a∗ ≤ 0 be the smallest eigenvalue of A.

a) Show that one of the two equalities a∗ = ‖A‖ or a∗ = −‖A‖ holds.

b) Let B ∈ L(H) be another compact and self–adjoint operator. Let b∗ ≥ 0 be the biggest eigenvalue
of B and b∗ ≤ 0 be the smallest eigenvalue of B. Let λ∗ ≥ 0 be the biggest eigenvalue of A+B
and λ∗ ≤ 0 be the smallest eigenvalue of A+B. Show that

λ∗ ≤ a∗ + b∗, λ∗ ≥ a∗ + b∗. (3.1)

Proof:

a) From the spectral theorem we know that σ(A) \ {0} ⊂ σp(A). From Theorem 3.1 we know that
A = 0 if a∗ = a∗ = 0, so without loss of generality we can assume that a∗ or a∗ are not trivial.
We also know that

a∗ = inf
‖x‖=1

(x,Ax), a∗ = sup
‖x‖=1

(x,Ax). (3.2)

Using Exercise 3.3 we know that

max{a∗, |a∗|} = sup
λ∈σ(A)

|λ| = sup
‖x‖=1

|(x,Ax)| = ‖A‖, (3.3)

from which the claim follows.

b) If A+B = 0 then the statement is trivial. Otherwise we get from Theorem 3.1

λ∗ = inf
‖x‖=1

(x,Ax) + (x,Bx) ≥ a∗ + b∗, (3.4)

and similarly

λ∗ = sup
‖x‖=1

(x,Ax) + (x,Bx) ≤ a∗ + b∗. (3.5)

So the claim holds. �

3



23. Januar 2020
Denis Brazke

denis.brazke@uni-heidelberg.de

Exercise 5.4
Let H := L2((0, 1),C) and D(A) := {f ∈ H2((0, 1),C) : f(0) = f(1), f ′(0) = f ′(1)}. Let A : D(A) −→
H be the periodic Laplace operator (see Example 1.21). Determine all eigenvalues and eigenfunctions
of A. Do these eigenfunctions form an orthonormal basis of H? Justify your answer.

Proof: We need to find solutions of the following boundary value problem
u′′(x) = λu(x) for all x ∈ (0, 1),

u(0) = u(1),

u′(0) = u′(1),

(4.1a)

(4.1b)

(4.1c)

where λ ∈ C takes the role of an eigenvalue. Using Example 1.21, we know that λ ∈ R+ since A is a
symmetric operator and positive. Solutions to (4.1a) are given by

u(x) = a sin(
√
λx) + b cos(

√
λx) + k for all x ∈ (0, 1) (4.2)

for parameters a, b, k ∈ C. In order to match the boundary conditions (4.1b) and (4.1c) we need to
choose a and b appropriately. For this prupose we define

s := sin(
√
λ), c := cos(

√
λ). (4.3)

Assuming s 6= 0 or equivalently c 6= 1, which corresponds to λ = 4π2j2 for some j ∈ N, from (4.1b) we
get

b
!

= as+ bc ⇐⇒ b = a
s

1− c
, (4.4)

and from (4.1c) we get
√
λa

!
=
√
λ ac−

√
λ bs ⇐⇒ b = a

c− 1

s
. (4.5)

Combining (4.4) and (4.5) we obtain

c− 1

s
=

s

1− c
⇐⇒ −(1− c)2 = s2

⇐⇒ −1 + 2c = 1

⇐⇒ c = 1

⇐⇒ λ = 4π2j2 for j ∈ Z.

(4.6)

(4.7)

(4.8)

(4.9)

So in total, we get the eigenvalues λj = 4π2j2 for all j ∈ Z with corresponding eigenfunctions

uj(x) = a sin(2πjx) + b cos(2πjx) + k for all x ∈ (0, 1), (4.10)

where a, b, k ∈ C are arbitrary parameters (which means that every eigenspace has dimension 3, except
for j = 0, for which the dimension is 1).

Setting a = i, b = 1 and k = 0, we obtain for every j ∈ Z the eigenfunction uj(x) = e2πijx. From
analysis, we know that span{x 7−→ e2πijx}j∈Z is dense in H (Fourier series), so we can extract an
orthonormal basis. �
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Exercise 5.5
Let H := L2((0, 1),C). Define the operator

Au(x) :=

∫ x

0
u(y) dy for all u ∈ H. (5.1)

a) Show that A : H −→ H is a compact operator.

b) Determine σp(A) and σ(A).

c) Is A a self–adjoint operator? Justify your answer.

Hint: You can use compact embedding theorems from the theory of Sobolev spaces.

Proof:

a) We first want to show, that A ∈ L(H). Linearity is trivial, so it remains to show continuity. Let
u ∈ H, then we have with the help of Jensen’s inequality

‖Au‖2 =

∫ 1

0

∣∣∣ ∫ x

0
u(y) dy

∣∣∣2 dx ≤
∫ 1

0
x

∫ x

0
|u(y)|2 dy dx ≤ ‖u‖2. (5.2)

So A : H −→ H is well–defined and continuous.

We now claim that v := Au ∈ H1((0, 1),C) and v′ = u. Indeed, by density we find a sequence
(uk)k ⊂ C∞c ((0, 1),C), such that uk → u in H. Since A is continuous, we find that vk := Auk → v.
By the fundamental theorem of calculus we have (vk)k ⊂ C∞((0, 1),C). Let ϕ ∈ C∞c ((0, 1),C),
then we have by the fundamental theorem of calculus∫ 1

0
vk(x)ϕ′(x) dx = −

∫ 1

0
v′k(x)ϕ(x) dx = −

∫ 1

0
uk(x)ϕ(x) dx. (5.3)

In the limit we find that u is the weak derivative of v. Since u, v ∈ H, we have v ∈ H1((0, 1),C).

Using the Sobolev embedding theorem, we know that H1((0, 1),C) is compactly embedded in H,
so A is a compact operator.

b) We first want to determine σp(A). Let λ ∈ C. In the case λ = 0 we are looking for a solution
u ∈ H such that ∫ x

0
u(y) dy = 0 for almost all x ∈ (0, 1). (5.4)

This can only be the case if u = 0 almost everywhere. So ker(A) = {0} and thus 0 /∈ σp(A).

Now let λ 6= 0 take the role of a potential eigenvalue, so we are looking for a solution∫ x

0
u(y) dy = λu(x) for almost all x ∈ (0, 1). (5.5)

Keep in mind that from this condition it follows that u ∈ H1((0, 1),C) ⊂ C0((0, 1),C) since the
left hand side is in the Sobolev space (see computations from a)). So boundary values are well
defined. An equivalent formulation of (5.5) is{

u′(x) = 1
λ u(x) for almost all x ∈ (0, 1),

u(0) = 0.

(5.6a)

(5.6b)
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The only solutions to this equation is given by u = 0 almost everywhere. So ker(A− λ id) = {0}
and it follows that σp(A) = ∅.

Since A is a compact operator we already know that 0 ∈ σ(A). We claim that σ(A) = {0} and
in order to show this, we compute the spectral radius of the operator. Using Exercise 1.4 we
know that

sup
λ∈σ(A)

|λ| = lim
k→∞

‖Ak‖
1
k , (5.7)

so we compute Ak for all k ∈ N. Via induction1 we get

Aku(x) =
1

(k − 1)!

∫ x

0
(x− y)k−1u(y) dy (5.8)

and similar to the continuity of A we obtain ‖A‖op ≤ 1
(k−1)! . From this we deduce that

sup
λ∈σ(A)

|λ| = lim
k→∞

‖Ak‖
1
k = 0, (5.9)

and thus σ(A) = {0}.

c) A is not self–adjoint because otherwise it would have an eigenvalue (see Theorem 3.1). �

1The induction requires the integration by parts formula, but similar to (5.3) we obtain that we can use it.
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Exercise 5.6
Let H be a separable Hilbert space and A ∈ L(H) be self–adjoint. Let N ∈ N∪ {∞}. Show that there
exists a decomposition

H =

N⊕
n=1

Hn (6.1)

with subspaces Hn ⊂ H for every n ∈ {1, . . . , N}, such that:

a) For every n ∈ {1, . . . , N} the space Hn is A invariant, i.e. for x ∈ Hn we have Ax ∈ Hn.

b) For every n ∈ {1, . . . , N} there exists yn ∈ Hn, such that yn is cyclic for the restriction A|Hn , i.e.

Hn = {f(A)yn : f ∈ C0(σ(A))}. (6.2)

Proof: Let {ek}k∈N ⊂ H be an orthonormal basis (possible by separability of H). Define the spaces

En := span{e1, . . . , en} for all n ∈ N. (6.3)

7


