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Exercise 4.1
Let H be a separable Hilbertspace and A ∈ J1. Show that the series

∑
k(ϕk, Aϕk) converges absolutely

for every orthonormal basis (ϕk)k ⊂ H and that the limit is independent of the choice of the orthonormal
basis.

Hint: For the independence you can use that every operator A ∈ J1 is decomposable into A = A+−A−,
where A+, A− ≥ 0 and A+A− = 0.

Proof: Since A ∈ J1 we can find an partial isometry U such that A = U |A|
1
2 |A|

1
2 . From this

representation we see that

|(ϕk, Aϕk)| ≤ ‖ |A|
1
2 U∗ϕk‖ ‖ |A|

1
2ϕk‖ for all k ∈ N. (1.1)

With the inequality of Cauchy–Schwarz we obtain∑
k∈N
|(ϕk, Aϕk)| ≤

(∑
k∈N
‖ |A|

1
2 U∗ϕk‖2

) 1
2
(∑

k∈N
‖ |A|

1
2 ϕk‖2

) 1
2
. (1.2)

Both factors are finite since we know from Theorem 1.32∑
k∈N
‖ |A|

1
2U∗ϕk‖2 =

∑
k∈N

(ϕk, U
∗|A|Uϕk) ≤ Tr |A| = ‖A‖J1 <∞, (1.3)∑

k∈N
‖ |A|

1
2ϕk‖2 =

∑
k∈N

(ϕk, |A|ϕk) ≤ Tr |A| = ‖A‖J1 <∞. (1.4)

Thus the series converges absolutely. To show independence, let (ψj)j be another orthonormal basis of
H. We decompose A = A+ −A− with A+, A− ≥ 0 and A+A− = 0 (see spectral theorem later). So it
suffices to show that the sum is independent for A ≥ 0. Using Parseval’s identity we get∑

k∈N
(ϕk, Aϕk) =

∑
k∈N
‖A

1
2ϕk‖2 =

∑
k∈N

∑
j∈N
|(ψj , A

1
2ϕk)|2 (1.5)

=
∑
j∈N

∑
k∈N
|(A

1
2ψj , ϕk)|2 =

∑
j∈N
‖A

1
2ψj‖2 =

∑
j∈N

(ψk, Aψk). (1.6)

So the series in independent of the orthonormal basis. �
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Exercise 4.2
Let X and Y be Banach spcaes and A ∈ L(X,Y ) be a Fredholm operator. Show that the adjoint
operator A′ ∈ L(Y ′, X ′) is a Fredholm operator and ind(A′) = − ind(A).

Proof: We find closed subspaces X0 ⊂ X and Y0 ⊂ Y , such that

X = X0 ⊕ ker(A), Y = ran(A)⊕ Y0, (2.1)

with their duals

X ′ = X ′0 ⊕ ker(A)′, Y ′ = ran(A)′ ⊕ Y ′0 . (2.2)

Since A is a Fredholm operator, the spaces ker(A) and Y0 are finite dimensional and therefore also
their dual spaces ker(A)′ and Y ′0 with the same dimensions. From this, the index formula follows easily.
It remains to show that ran(A′) is closed. Notice that ran(A′) = X ′0.

Let J : X0 −→ X and R : Y −→ ran(A) be the inclusion and restriction map respectively from
Proposition 2.6. Then the operator B := JAR : X0 −→ ran(A) is a continuous bijection and since
ran(A) is closed it follows that B−1 : ran(A) −→ X0 is a continuous linear map. Since inverse of
adjoints are the adjoints of the inverse, we obtain that B′ : ran(A)′ −→ X ′0 is a continuous bijective
map and therefore maps closed spaces onto closed spaces. So the space ran(A′) = X ′0 is a closed space.
Altogether the claim follows. �
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Exercise 4.3
Let X, Y and Z be Banach spaces and let B ∈ L(X,Y ) and A ∈ L(Y,Z). Show that if two of the
three operators A, B and AB are Fredholm operators, then also the third one is a Fredholm operator
and it holds

ind(AB) = ind(A) + ind(B). (3.1)

In order to do so, show the following statements:

a) Show that dim ker(AB) = dim ker(B) + dim(ker(A) ∩ ran(B)).

b) Decompose the spaces Y , ker(A) and ran(B) suitably and show, that Z decomposes in ran(AB),
a subspace of ran(A) and a closed subspace Z0 ⊂ Z.

c) Show that codim ran(AB) = codim ran(A)+codim ran(B)−dim ker(A)+dim(ran(B)∩ker(A)).

d) Show the closedness of the ranges.

e) Conclude the statement.

Hint: Considering b): use more than one decomposition of the space Y .

This exercise will be longer than the others since there are a lot of cases to consider, so the amount of
points will be doubled for this exercise. Apart from d) and e) this is an exercise in linear algebra.

Proof:

a) Let X0 ⊂ X a subspace, such that X = ker(B)⊕X0. Then the restriction B|X0 is injective and
ran(B|X0) = ran(B) and it holds

B−1(V ) = ker(B)⊕B|−1X0
(V ) for all subspaces V ⊂ Y. (3.2)

We therefore get

ker(AB) = B−1(ker(A) ∩ ran(B)) = ker(B)⊕B|−1X0
(ker(A) ∩ ran(B)). (3.3)

We get from this equality

dim ker(AB) = dim ker(B) + dim(ker(A) ∩ ran(B)). (3.4)

Note, that if A and B are Fredholm operators, then the right hand side is finite and therefore
the left. If AB is a Fredholm operator, then the right hand side must be finite.

b) We find spaces Y0, Y1, Y2 and Y3 so that

Y = ran(B)⊕ Y0, ker(A) = (ran(B) ∩ ker(A))⊕ Y2, (3.5)

Y = (ran(B) + ker(A))⊕ Y1, ran(B) = Y3 ⊕ (ran(B) ∩ ker(A)). (3.6)

With these decompositions we have ran(B) + ker(A) = ran(B)⊕ Y2 and thus

Y = ran(B)⊕ Y2 ⊕ Y1 = Y3 ⊕ (ran(B) ∩ ker(A))⊕ Y2 ⊕ Y1 = Y3 ⊕ ker(A)⊕ Y1, (3.7)

in particular Y0 ' Y1 ⊕ Y2. So the restriction A|Y3⊕Y1 : Y3 ⊕ Y1 −→ ran(A) is a bijection and we
have

ran(A) = AY3 ⊕AY1 = A(Y3 ⊕ ker(A))⊕AY1 = ran(AB)⊕AY1. (3.8)
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Note that by the bijectivity of the restriction we get AY1 ' Y1. Since we can find a subspace
Z0 ⊂ Z and a decomposition Z = ran(A)⊕ Z0, we get

Z = ran(AB)⊕AY1 ⊕ Z0, (3.9)

which was the claim.

c) Note that by the bijectivity of the restriction of A regarded in b) we get AY1 ' Y1. Assuming
first that all three operators A, B and AB are Fredholm, we get from b)

codim ran(AB) = codim ran(A) + dim(Y1) (3.10)

= codim ran(A) + dim(Y0)− dim(Y2) (3.11)

= codim ran(A) + codim ran(B)− dimY2 (3.12)

= codim ran(A) + codim ran(B)− dim ker(A) + dim(ran(B) ∩ ker(A)). (3.13)

Note that we already know from a) that dim(ran(B) ∩ ker(A)) is finite. It remains to show that
this is indeed well-defined.

• If A and B are Fredholm operators, then we know Y0 is finite dimensional and therefore Y1
and Y2 by the aformentioned isomorphy. Also the quantities codim ran(A) and dim ker(A)
are finite, so that the derivation (3.10) – (3.13) is well-defined and the claim holds.

• Assuming B and AB are Fredholm operators, then again Y0 and therefore Y1 and Y2 are
finite dimensional. We also have that

dim ker(A) = dimY2 + dim(ran(B) ∩ ker(A)) <∞ (3.14)

by a) and codim ran(A) = dimZ0 ≤ codim ran(AB) <∞. So as before, the claim holds.

• Assuming that A and AB are Fredholm operators. Then by b) we know that Z0 ⊕AY1 is
finite dimensional and hence Y1 and Z0 by themselves. Also Y2 is finite dimensional which
implies Y0 ' Y1 ⊕ Y2 is finite dimensional. So codim ran(B) is finite and the claim holds yet
again.

Before we continue, let us summarise that the calculations above show that both sequences

0 −→ ker(B) −→ ker(AB)
B−→ ker(A) ∩ ran(B) −→ 0, (3.15)

and

0 −→ ran(B)+ker(A)/ran(B) −→ Y /ran(B)
A−→ Z/ran(AB) −→ Z/ran(A) −→ 0 (3.16)

are exact sequences. If two of the three operators A, B and AB are Fredholm operators, then at most
one space in the above calculations is infinite dimensional. The exactness implies that this potential
infinite dimensional space is finite dimensional.

d) We do a case study:

• Assume first that A and B are Fredholm operators. In this setting Y3 is a closed space
since ran(B) ∩ ker(A) ⊂ ker(A) is finite dimensional. Since A|Y3⊕Y1 is bijective (onto
ran(A)) and ran(A) is closed by assumption, we know that Y3 is a closed space. Since
dimY1 ≤ dimY0 < ∞, also Y1 is a closed space and therefore Y3 ⊕ Y1 is a Banach space.
The restriction A|Y3⊕Y1 then becomes invertible (onto ran(A)) and as the image of a closed
space, the space AY3 is itself closed. Since it holds ran(AB) = AY3, we get the closedness
of ran(AB).

• Assume now that B and AB are Fredholm operators. Then again dimY1 ≤ dimY0 < ∞.
Therefore AY1 is finite dimensional and hence closed. From the proof of b) we get ran(A) =
ran(AB)⊕AY1, which is closed by assumption.
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• Assume now that A and AB are Fredholm operators. Let X0 ⊂ X be a closed space, such
that X = ker(AB)⊕X0. We take the inclusion map J : X0 −→ X and the restriction map
R : Z −→ ran(AB) as in Proposition 2.6.

We claim that ran(B) = ran(BJ) is closed. Indeed let yk := BJxk ∈ ran(BJ) be a convergent
sequence with yk → y as k →∞. Then it follows RAyn → RAy as k →∞. Note that RA
is a Fredholm operator (follows from the first case study in this exercise combined with
the previous results) and therefor RAy ∈ ran(RA). Define the map C := RABJ : X0 −→
ran(AB). Then from previous results C is a Fredholm operator and bijective with continuous
inverse. Hence

xk = C−1RAyk
k→∞−−−→ C−1RAy =: x∗ ∈ X0. (3.17)

Therefore yk → BJx∗ and thus ran(BJ) = ran(B) is closed.

e) If two of the three operators A, B and AB are Fredholm operators then we have shown that the
ranges are in either case closed and it always holds

dim ker(AB) = dim ker(B) + dim(ker(A) ∩ ran(B)), (3.18)

codim ran(AB) = codim ran(A) + codim ran(B)− dim ker(A) + dim(ran(B) ∩ ker(A)), (3.19)

where all quantities are in either case finite. Therefore, all three operators must be Fredholm
operators. With these identities we have

ind(AB) = dim ker(AB)− codim ran(AB) (3.20)

= dim ker(A) + dim ker(B)− codim ran(A)− codim ran(B) (3.21)

= ind(A) + ind(B). (3.22)

This concludes the proof. �
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