Functional Analysis 2 - Exercise Sheet 4

Winter term 2019/20, University of Heidelberg

Exercise 4.1

Let H be a separable Hilbertspace and $A \in \mathcal{J}_{1}$. Show that the series $\sum_{k}\left(\varphi_{k}, A \varphi_{k}\right)$ converges absolutely for every orthonormal basis $\left(\varphi_{k}\right)_{k} \subset H$ and that the limit is independent of the choice of the orthonormal basis.

Hint: For the independence you can use that every operator $A \in \mathcal{J}_{1}$ is decomposable into $A=A_{+}-A_{-}$, where $A_{+}, A_{-} \geq 0$ and $A_{+} A_{-}=0$.

Proof: Since $A \in \mathcal{J}_{1}$ we can find an partial isometry U such that $A=U|A|^{\frac{1}{2}}|A|^{\frac{1}{2}}$. From this representation we see that

$$
\begin{equation*}
\left|\left(\varphi_{k}, A \varphi_{k}\right)\right| \leq\left\||A|^{\frac{1}{2}} U^{*} \varphi_{k}\right\|\left\||A|^{\frac{1}{2}} \varphi_{k}\right\| \quad \text { for all } k \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

With the inequality of Cauchy-Schwarz we obtain

$$
\begin{equation*}
\sum_{k \in \mathbb{N}}\left|\left(\varphi_{k}, A \varphi_{k}\right)\right| \leq\left(\sum_{k \in \mathbb{N}}\left\||A|^{\frac{1}{2}} U^{*} \varphi_{k}\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{k \in \mathbb{N}}\left\||A|^{\frac{1}{2}} \varphi_{k}\right\|^{2}\right)^{\frac{1}{2}} . \tag{1.2}
\end{equation*}
$$

Both factors are finite since we know from Theorem 1.32

$$
\begin{gather*}
\sum_{k \in \mathbb{N}}\left\||A|^{\frac{1}{2}} U^{*} \varphi_{k}\right\|^{2}=\sum_{k \in \mathbb{N}}\left(\varphi_{k}, U^{*}|A| U \varphi_{k}\right) \leq \operatorname{Tr}|A|=\|A\|_{\mathcal{J}_{1}}<\infty \tag{1.3}\\
\sum_{k \in \mathbb{N}}\left\||A|^{\frac{1}{2}} \varphi_{k}\right\|^{2}=\sum_{k \in \mathbb{N}}\left(\varphi_{k},|A| \varphi_{k}\right) \leq \operatorname{Tr}|A|=\|A\|_{\mathcal{J}_{1}}<\infty \tag{1.4}
\end{gather*}
$$

Thus the series converges absolutely. To show independence, let $\left(\psi_{j}\right)_{j}$ be another orthonormal basis of H. We decompose $A=A_{+}-A_{-}$with $A_{+}, A_{-} \geq 0$ and $A_{+} A_{-}=0$ (see spectral theorem later). So it suffices to show that the sum is independent for $A \geq 0$. Using Parseval's identity we get

$$
\begin{align*}
\sum_{k \in \mathbb{N}}\left(\varphi_{k}, A \varphi_{k}\right) & =\sum_{k \in \mathbb{N}}\left\|A^{\frac{1}{2}} \varphi_{k}\right\|^{2}=\sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}}\left|\left(\psi_{j}, A^{\frac{1}{2}} \varphi_{k}\right)\right|^{2} \tag{1.5}\\
& =\sum_{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|\left(A^{\frac{1}{2}} \psi_{j}, \varphi_{k}\right)\right|^{2}=\sum_{j \in \mathbb{N}}\left\|A^{\frac{1}{2}} \psi_{j}\right\|^{2}=\sum_{j \in \mathbb{N}}\left(\psi_{k}, A \psi_{k}\right) . \tag{1.6}
\end{align*}
$$

So the series in independent of the orthonormal basis.

Exercise 4.2

Let X and Y be Banach spcaes and $A \in \mathcal{L}(X, Y)$ be a Fredholm operator. Show that the adjoint operator $A^{\prime} \in \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)$ is a Fredholm operator and $\operatorname{ind}\left(A^{\prime}\right)=-\operatorname{ind}(A)$.

Proof: We find closed subspaces $X_{0} \subset X$ and $Y_{0} \subset Y$, such that

$$
\begin{equation*}
X=X_{0} \oplus \operatorname{ker}(A), \quad Y=\operatorname{ran}(A) \oplus Y_{0}, \tag{2.1}
\end{equation*}
$$

with their duals

$$
\begin{equation*}
X^{\prime}=X_{0}^{\prime} \oplus \operatorname{ker}(A)^{\prime}, \quad \quad Y^{\prime}=\operatorname{ran}(A)^{\prime} \oplus Y_{0}^{\prime} \tag{2.2}
\end{equation*}
$$

Since A is a Fredholm operator, the spaces $\operatorname{ker}(A)$ and Y_{0} are finite dimensional and therefore also their dual spaces $\operatorname{ker}(A)^{\prime}$ and Y_{0}^{\prime} with the same dimensions. From this, the index formula follows easily. It remains to show that $\operatorname{ran}\left(A^{\prime}\right)$ is closed. Notice that $\operatorname{ran}\left(A^{\prime}\right)=X_{0}^{\prime}$.

Let $J: X_{0} \longrightarrow X$ and $R: Y \longrightarrow \operatorname{ran}(A)$ be the inclusion and restriction map respectively from Proposition 2.6. Then the operator $B:=J A R: X_{0} \longrightarrow \operatorname{ran}(A)$ is a continuous bijection and since $\operatorname{ran}(A)$ is closed it follows that $B^{-1}: \operatorname{ran}(A) \longrightarrow X_{0}$ is a continuous linear map. Since inverse of adjoints are the adjoints of the inverse, we obtain that $B^{\prime}: \operatorname{ran}(A)^{\prime} \longrightarrow X_{0}^{\prime}$ is a continuous bijective map and therefore maps closed spaces onto closed spaces. So the space $\operatorname{ran}\left(A^{\prime}\right)=X_{0}^{\prime}$ is a closed space. Altogether the claim follows.

Exercise 4.3

Let X, Y and Z be Banach spaces and let $B \in \mathcal{L}(X, Y)$ and $A \in \mathcal{L}(Y, Z)$. Show that if two of the three operators A, B and $A B$ are Fredholm operators, then also the third one is a Fredholm operator and it holds

$$
\begin{equation*}
\operatorname{ind}(A B)=\operatorname{ind}(A)+\operatorname{ind}(B) \tag{3.1}
\end{equation*}
$$

In order to do so, show the following statements:
a) Show that $\operatorname{dim} \operatorname{ker}(A B)=\operatorname{dim} \operatorname{ker}(B)+\operatorname{dim}(\operatorname{ker}(A) \cap \operatorname{ran}(B))$.
b) Decompose the spaces $Y, \operatorname{ker}(A)$ and $\operatorname{ran}(B)$ suitably and show, that Z decomposes in $\operatorname{ran}(A B)$, a subspace of $\operatorname{ran}(A)$ and a closed subspace $Z_{0} \subset Z$.
c) Show that $\operatorname{codim} \operatorname{ran}(A B)=\operatorname{codim} \operatorname{ran}(A)+\operatorname{codim} \operatorname{ran}(B)-\operatorname{dim} \operatorname{ker}(A)+\operatorname{dim}(\operatorname{ran}(B) \cap \operatorname{ker}(A))$.
d) Show the closedness of the ranges.
e) Conclude the statement.

Hint: Considering b): use more than one decomposition of the space Y.
This exercise will be longer than the others since there are a lot of cases to consider, so the amount of points will be doubled for this exercise. Apart from d) and e) this is an exercise in linear algebra.

Proof:

a) Let $X_{0} \subset X$ a subspace, such that $X=\operatorname{ker}(B) \oplus X_{0}$. Then the restriction $\left.B\right|_{X_{0}}$ is injective and $\operatorname{ran}\left(\left.B\right|_{X_{0}}\right)=\operatorname{ran}(B)$ and it holds

$$
\begin{equation*}
B^{-1}(V)=\left.\operatorname{ker}(B) \oplus B\right|_{X_{0}} ^{-1}(V) \quad \text { for all subspaces } V \subset Y \tag{3.2}
\end{equation*}
$$

We therefore get

$$
\begin{equation*}
\operatorname{ker}(A B)=B^{-1}(\operatorname{ker}(A) \cap \operatorname{ran}(B))=\left.\operatorname{ker}(B) \oplus B\right|_{X_{0}} ^{-1}(\operatorname{ker}(A) \cap \operatorname{ran}(B)) \tag{3.3}
\end{equation*}
$$

We get from this equality

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker}(A B)=\operatorname{dim} \operatorname{ker}(B)+\operatorname{dim}(\operatorname{ker}(A) \cap \operatorname{ran}(B)) \tag{3.4}
\end{equation*}
$$

Note, that if A and B are Fredholm operators, then the right hand side is finite and therefore the left. If $A B$ is a Fredholm operator, then the right hand side must be finite.
b) We find spaces Y_{0}, Y_{1}, Y_{2} and Y_{3} so that

$$
\begin{array}{lr}
Y=\operatorname{ran}(B) \oplus Y_{0}, & \operatorname{ker}(A)=(\operatorname{ran}(B) \cap \operatorname{ker}(A)) \oplus Y_{2}, \\
Y=(\operatorname{ran}(B)+\operatorname{ker}(A)) \oplus Y_{1}, & \operatorname{ran}(B)=Y_{3} \oplus(\operatorname{ran}(B) \cap \operatorname{ker}(A)) .
\end{array}
$$

With these decompositions we have $\operatorname{ran}(B)+\operatorname{ker}(A)=\operatorname{ran}(B) \oplus Y_{2}$ and thus

$$
\begin{equation*}
Y=\operatorname{ran}(B) \oplus Y_{2} \oplus Y_{1}=Y_{3} \oplus(\operatorname{ran}(B) \cap \operatorname{ker}(A)) \oplus Y_{2} \oplus Y_{1}=Y_{3} \oplus \operatorname{ker}(A) \oplus Y_{1}, \tag{3.7}
\end{equation*}
$$

in particular $Y_{0} \simeq Y_{1} \oplus Y_{2}$. So the restriction $\left.A\right|_{Y_{3} \oplus Y_{1}}: Y_{3} \oplus Y_{1} \longrightarrow \operatorname{ran}(A)$ is a bijection and we have

$$
\begin{equation*}
\operatorname{ran}(A)=A Y_{3} \oplus A Y_{1}=A\left(Y_{3} \oplus \operatorname{ker}(A)\right) \oplus A Y_{1}=\operatorname{ran}(A B) \oplus A Y_{1} . \tag{3.8}
\end{equation*}
$$

Note that by the bijectivity of the restriction we get $A Y_{1} \simeq Y_{1}$. Since we can find a subspace $Z_{0} \subset Z$ and a decomposition $Z=\operatorname{ran}(A) \oplus Z_{0}$, we get

$$
\begin{equation*}
Z=\operatorname{ran}(A B) \oplus A Y_{1} \oplus Z_{0}, \tag{3.9}
\end{equation*}
$$

which was the claim.
c) Note that by the bijectivity of the restriction of A regarded in b) we get $A Y_{1} \simeq Y_{1}$. Assuming first that all three operators A, B and $A B$ are Fredholm, we get from b)

$$
\begin{align*}
\operatorname{codim} \operatorname{ran}(A B) & =\operatorname{codim} \operatorname{ran}(A)+\operatorname{dim}\left(Y_{1}\right) \tag{3.10}\\
& =\operatorname{codim} \operatorname{ran}(A)+\operatorname{dim}\left(Y_{0}\right)-\operatorname{dim}\left(Y_{2}\right) \tag{3.11}\\
& =\operatorname{codim} \operatorname{ran}(A)+\operatorname{codim} \operatorname{ran}(B)-\operatorname{dim} Y_{2} \tag{3.12}\\
& =\operatorname{codim} \operatorname{ran}(A)+\operatorname{codim} \operatorname{ran}(B)-\operatorname{dim} \operatorname{ker}(A)+\operatorname{dim}(\operatorname{ran}(B) \cap \operatorname{ker}(A)) . \tag{3.13}
\end{align*}
$$

Note that we already know from a) that $\operatorname{dim}(\operatorname{ran}(B) \cap \operatorname{ker}(A))$ is finite. It remains to show that this is indeed well-defined.

- If A and B are Fredholm operators, then we know Y_{0} is finite dimensional and therefore Y_{1} and Y_{2} by the aformentioned isomorphy. Also the quantities $\operatorname{codim} \operatorname{ran}(A)$ and $\operatorname{dim} \operatorname{ker}(A)$ are finite, so that the derivation (3.10) - (3.13) is well-defined and the claim holds.
- Assuming B and $A B$ are Fredholm operators, then again Y_{0} and therefore Y_{1} and Y_{2} are finite dimensional. We also have that

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker}(A)=\operatorname{dim} Y_{2}+\operatorname{dim}(\operatorname{ran}(B) \cap \operatorname{ker}(A))<\infty \tag{3.14}
\end{equation*}
$$

by a) and $\operatorname{codim} \operatorname{ran}(A)=\operatorname{dim} Z_{0} \leq \operatorname{codim} \operatorname{ran}(A B)<\infty$. So as before, the claim holds.

- Assuming that A and $A B$ are Fredholm operators. Then by b) we know that $Z_{0} \oplus A Y_{1}$ is finite dimensional and hence Y_{1} and Z_{0} by themselves. Also Y_{2} is finite dimensional which implies $Y_{0} \simeq Y_{1} \oplus Y_{2}$ is finite dimensional. So codim $\operatorname{ran}(B)$ is finite and the claim holds yet again.

Before we continue, let us summarise that the calculations above show that both sequences

$$
\begin{equation*}
0 \longrightarrow \operatorname{ker}(B) \longrightarrow \operatorname{ker}(A B) \xrightarrow{B} \operatorname{ker}(A) \cap \operatorname{ran}(B) \longrightarrow 0, \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \longrightarrow \operatorname{ran}(B)+\operatorname{ker}(A) / \operatorname{ran}(B) \longrightarrow Y / \operatorname{ran}(B) \xrightarrow{A} / \operatorname{ran}(A B) \longrightarrow Z / \operatorname{ran}(A) \longrightarrow 0 \tag{3.16}
\end{equation*}
$$

are exact sequences. If two of the three operators A, B and $A B$ are Fredholm operators, then at most one space in the above calculations is infinite dimensional. The exactness implies that this potential infinite dimensional space is finite dimensional.
d) We do a case study:

- Assume first that A and B are Fredholm operators. In this setting Y_{3} is a closed space since $\operatorname{ran}(B) \cap \operatorname{ker}(A) \subset \operatorname{ker}(A)$ is finite dimensional. Since $\left.A\right|_{Y_{3} \oplus Y_{1}}$ is bijective (onto $\operatorname{ran}(A))$ and $\operatorname{ran}(A)$ is closed by assumption, we know that Y_{3} is a closed space. Since $\operatorname{dim} Y_{1} \leq \operatorname{dim} Y_{0}<\infty$, also Y_{1} is a closed space and therefore $Y_{3} \oplus Y_{1}$ is a Banach space. The restriction $\left.A\right|_{Y_{3} \oplus Y_{1}}$ then becomes invertible (onto $\operatorname{ran}(A)$) and as the image of a closed space, the space $A Y_{3}$ is itself closed. Since it holds $\operatorname{ran}(A B)=A Y_{3}$, we get the closedness of $\operatorname{ran}(A B)$.
- Assume now that B and $A B$ are Fredholm operators. Then again $\operatorname{dim} Y_{1} \leq \operatorname{dim} Y_{0}<\infty$. Therefore $A Y_{1}$ is finite dimensional and hence closed. From the proof of b) we get $\operatorname{ran}(A)=$ $\operatorname{ran}(A B) \oplus A Y_{1}$, which is closed by assumption.
- Assume now that A and $A B$ are Fredholm operators. Let $X_{0} \subset X$ be a closed space, such that $X=\operatorname{ker}(A B) \oplus X_{0}$. We take the inclusion map $J: X_{0} \longrightarrow X$ and the restriction map $R: Z \longrightarrow \operatorname{ran}(A B)$ as in Proposition 2.6.
We claim that $\operatorname{ran}(B)=\operatorname{ran}(B J)$ is closed. Indeed let $y_{k}:=B J x_{k} \in \operatorname{ran}(B J)$ be a convergent sequence with $y_{k} \rightarrow y$ as $k \rightarrow \infty$. Then it follows $R A y_{n} \rightarrow R A y$ as $k \rightarrow \infty$. Note that $R A$ is a Fredholm operator (follows from the first case study in this exercise combined with the previous results) and therefor $R A y \in \operatorname{ran}(R A)$. Define the map $C:=R A B J: X_{0} \longrightarrow$ $\operatorname{ran}(A B)$. Then from previous results C is a Fredholm operator and bijective with continuous inverse. Hence

$$
\begin{equation*}
x_{k}=C^{-1} R A y_{k} \xrightarrow{k \rightarrow \infty} C^{-1} R A y=: x_{*} \in X_{0} . \tag{3.17}
\end{equation*}
$$

Therefore $y_{k} \rightarrow B J x_{*}$ and thus $\operatorname{ran}(B J)=\operatorname{ran}(B)$ is closed.
e) If two of the three operators A, B and $A B$ are Fredholm operators then we have shown that the ranges are in either case closed and it always holds

$$
\begin{align*}
\operatorname{dim} \operatorname{ker}(A B) & =\operatorname{dim} \operatorname{ker}(B)+\operatorname{dim}(\operatorname{ker}(A) \cap \operatorname{ran}(B)), \tag{3.18}\\
\operatorname{codim} \operatorname{ran}(A B) & =\operatorname{codim} \operatorname{ran}(A)+\operatorname{codim} \operatorname{ran}(B)-\operatorname{dim} \operatorname{ker}(A)+\operatorname{dim}(\operatorname{ran}(B) \cap \operatorname{ker}(A)), \tag{3.19}
\end{align*}
$$

where all quantities are in either case finite. Therefore, all three operators must be Fredholm operators. With these identities we have

$$
\begin{align*}
\operatorname{ind}(A B) & =\operatorname{dim} \operatorname{ker}(A B)-\operatorname{codim} \operatorname{ran}(A B) \tag{3.20}\\
& =\operatorname{dim} \operatorname{ker}(A)+\operatorname{dim} \operatorname{ker}(B)-\operatorname{codim} \operatorname{ran}(A)-\operatorname{codim} \operatorname{ran}(B) \tag{3.21}\\
& =\operatorname{ind}(A)+\operatorname{ind}(B) \tag{3.22}
\end{align*}
$$

This concludes the proof.

