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Exercise 3.1
Let H be a Hilbert space and A : D(A) −→ H be a symmetric and closed operator. Show that only
one of the following possibilities can occur:

i) σ(A) = C, ii) σ(A) = {λ ∈ C : =(λ) ≥ 0},
iii) σ(A) ⊂ R, iv) σ(A) = {λ ∈ C : =(λ) ≤ 0}.

Conclude that in this setting A is self-adjoint if and only if ker(A∗ ± i id) = {0}.

Hint: Exercise 2.2 might be helpful.

Proof: Let C± := {λ ∈ C : ±=(λ) > 0} and let λ ∈ C±. Then we have by the identity ‖(A−λ id)x‖2 =
‖(A−<(λ) id)x‖2 + =(λ)2 ‖x‖2 that ker(A− λid) = {0}, which implies that A− λ id is injective and
using Exercise 2.2 this map also has a closed range.

Now, if ran(A − λ id) = X, then λ ∈ ρ(A). But on the other hand, it also holds ran(A − λ id)⊥ =
ker(A∗ − λ̄ id), which implies with the help of Exercise 2.2 that either C± ⊂ σ(A), or C± ∩ σ(A) = ∅.

Using the closedness of the spectrum (Theorem 1.10 (ii)) we conclude in the first case that only the
three possibilities i), ii) and iv) can occur. In the latter case only possibility iii), which proves the
characterisation of the spectra.

To prove the equivalence, let us first assume A is self-adjoint. Then by Proposition 1.16 (iii) we know
σ(A) ⊂ R and therefore

ker(A∗ ± i id) = ran(A∓ i id)⊥ = H⊥ = {0}. (1.1)

So one directions holds. To prove the converse direction, assume ker(A∗ ± i id) = {0}, which implies
(since the range is closed)

ran(A± i id) = ker(A∗ ∓ i id)⊥ = H. (1.2)

So A± i id is surjective. Using Proposition 1.16 (ii) then implies that A is self-adjoint. �
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Exercise 3.2
Let X and Y be Banach spaces. Let T ∈ L(X,Y ) and T ′ ∈ L(Y ′, X ′) be its adjoint.

a) Show that ‖T‖L(X,Y ) = ‖T ′‖L(Y ′,X′).

b) Show that T is a compact operator if and only if T ′ is a compact operator.

Hint: Statement b) is the statement of Proposition 1.26 (iii). You are allowed to use the remaining
statements of that proposition for this exercise.

Proof:

a) Let x ∈ X and y′ ∈ Y ′, then it holds

|〈T ′y′, x〉| = |〈y′, Tx〉| ≤ ‖T‖L(X,Y ) ‖y′‖Y ′ ‖x‖X . (2.1)

Therefore ‖T ′y′‖X′ ≤ ‖T‖(X,Y )‖y′‖ and thus ‖T‖L(X,Y ) ≥ ‖T ′‖L(Y ′,X′).

Similarly we have

|〈y′, Tx〉| = |〈T ′y′, x〉| ≤ ‖T ′‖L(Y ′,X′) ‖y′‖Y ′ ‖x‖X . (2.2)

If Tx = 0, then we have nothing to show. If Tx 6= 0, then by the Hahn–Banach theorem there
exists z ∈ Y ′ such that ‖z‖Y ′ = 1 and 〈z, Tx〉 = ‖Tx‖Y . Substituting y′ = z in (2.2) results in

‖Tx‖Y ≤ ‖T ′‖L(Y ′,X′) ‖x‖X , (2.3)

and thus ‖T‖L(X,Y ) ≤ ‖T ′‖L(Y ′,X′). Altogether the claim follows.

b) Let T be a compact operator. Then by Proposition 1.26 (ii) we can find a sequence of compact
operators of finite rank (Tn)n such that Tn → T in L(X,Y ). Then the adjoints T ′n are also compact
operators of finite rank for all n ∈ N and we have with the help of a) that ‖T ′ − T ′n‖L(Y ′,X′) =
‖T − Tn‖L(X,Y ). So we can approximate T ′ by compact operators of finite rank and thus T ′ is a
compact operator.

Conversely, assume T ′ is a compact operator. As previously shown, it follows that (T ′)′ is a
compact operator. But (T ′)′ is an extension of T , so T is a compact operator. �
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Exercise 3.3
Let H be a Hilbert space and let A ∈ L(H) be self-adjoint. Show that

‖A‖ = sup
λ∈σ(A)

|λ| = sup
‖x‖=1

|(x,Ax)|. (3.1)

Hint: Exercise 1.4 might be helpful. Use that 4<(x,Ay) = (x+ y,Ax+Ay)− (x− y,Ax−Ay) and
the parallelogram law to deduce

|(x,Ay)| ≤ sup
‖z‖=1

|(z,Az)|

for x, y ∈ H such that ‖x‖ = ‖y‖ = 1.

Proof: For self-adjoint operators it holds1 ‖A2‖ = ‖A‖2 and therefore ‖A2n‖ = ‖A‖2n for all n ∈ N.
From Exercise 1.4 we know that

sup
λ∈σ(A)

|λ| = lim
m→∞

‖Am‖
1
m = lim

n→∞
‖A2n‖2−n

= ‖A‖. (3.2)

Moreover it holds

|(x,Ax)| ≤ ‖A‖ ‖x‖2 =⇒ sup
‖x‖=1

|(x,Ax)| ≤ ‖A‖. (3.3)

So it remains to show the reverse inequality. For this purpose, let α > 0 and x ∈ H with x /∈ ker(A).
Then we can compute

(A(αx± 1
αAx), αx± 1

αAx) = (A(αx), αx) + (A2( 1
αx), A( 1

αx))± 2 ‖Ax‖2. (3.4)

Taking the difference of those two equations results in the polarisation identity

4 ‖Ax‖2 = (A(αx+ 1
αAx), αx+ 1

αAx)− (A(αx− 1
αAx), αx− 1

αAx). (3.5)

For simplicity, define the following quantities:

s := sup
‖x‖=1

|(x,Ax)|, u± := αx± 1
αAx, ũ± :=

u±
‖u±‖

. (3.6)

Note that u± 6= 0, from which we conclude that ũ± is well defined with ‖ũ±‖ = 1. We obtain from
(3.5) together with the parallelogramm law

4 ‖Ax‖2 = ‖u+‖2 (Aũ+, ũ+)− ‖u−‖2 (Aũ−, ũ−) (3.7)

≤ s (‖u+‖2 + ‖u−‖2) (3.8)

= 2s (α2‖x‖2 + 1
α2 ‖Ax‖2). (3.9)

Now choosing α = ‖Ax‖
‖x‖ results in

4 ‖Ax‖2 ≤ 4s ‖Ax‖ ‖x‖, (3.10)

from which the claim follows. �

1Follows from ‖A2‖ = sup
‖x‖=1

(A2x, x) = sup
‖x‖=1

‖Ax‖2 = ‖A‖2.

3



28. November 2019
Denis Brazke

denis.brazke@uni-heidelberg.de

Exercise 3.4
For a Hilbert space H and a non-negative operator A ∈ L(H) recall the notation |A| := (A∗A)

1
2 . Let

H = C2 and define the matrices X,Y ∈ L(H) via

X :=

(
1 0

0 − 1

)
, Y :=

(
0 1

1 0

)
. (4.1)

a) Compute |X + id| and |Y − id|.

b) Show that it does not hold |(X + id) + (Y − id)| ≤ |X + id|+ |Y − id|.

Proof:

a) Since X, Y and id are symmetric and have entries in R, it holds (X + id)∗ = X + id and
(Y − id)∗ = Y − id. We compute

(X + id)2 = 4

(
1 0

0 0

)
, (Y − id)2 =

(
2 − 2

−2 2

)
. (4.2)

So we get the desired quantities by taking the operator square root. Notice that we want the
square root to be ≥ 0. We get

|X + id| = 2

(
1 0

0 0

)
, |Y − id| =

(
1 − 1

−1 1

)
. (4.3)

b) We need to compute

|X + Y | =

√(
2 0

0 2

)
=
√

2 id. (4.4)

Now it holds

|X + id|+ |Y − id| − |X + Y | =

(
3−
√

2 −1

−1 1−
√

2

)
. (4.5)

We compute the eigenvalues λ1 = 2 and λ2 = −2(
√

2− 1). Therefore the matrix is indefinite and
thus it does not hold |(X + id) + (Y − id)| ≤ |X + id|+ |Y − id|. �
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