Functional Analysis 2 - Exercise Sheet 3

Winter term 2019/20, University of Heidelberg

Exercise 3.1

Let H be a Hilbert space and $A: \mathcal{D}(A) \longrightarrow H$ be a symmetric and closed operator. Show that only one of the following possibilities can occur:
i) $\sigma(A)=\mathbb{C}$,
ii) $\sigma(A)=\{\lambda \in \mathbb{C}: \Im(\lambda) \geq 0\}$,
iii) $\sigma(A) \subset \mathbb{R}$,
iv) $\sigma(A)=\{\lambda \in \mathbb{C}: \Im(\lambda) \leq 0\}$.

Conclude that in this setting A is self-adjoint if and only if $\operatorname{ker}\left(A^{*} \pm \mathbf{i} i d\right)=\{0\}$.
Hint: Exercise 2.2 might be helpful.

Proof: Let $\mathbb{C}_{ \pm}:=\{\lambda \in \mathbb{C}: \pm \Im(\lambda)>0\}$ and let $\lambda \in \mathbb{C}_{ \pm}$. Then we have by the identity $\|(A-\lambda$ id $) x \|^{2}=$ $\|(A-\Re(\lambda) \mathrm{id}) x\|^{2}+\Im(\lambda)^{2}\|x\|^{2}$ that $\operatorname{ker}(A-\lambda \mathrm{id})=\{0\}$, which implies that $A-\lambda$ id is injective and using Exercise 2.2 this map also has a closed range.
Now, if $\operatorname{ran}(A-\lambda$ id $)=X$, then $\lambda \in \rho(A)$. But on the other hand, it also holds $\operatorname{ran}(A-\lambda \text { id })^{\perp}=$ $\operatorname{ker}\left(A^{*}-\bar{\lambda} \mathrm{id}\right)$, which implies with the help of Exercise 2.2 that either $\mathbb{C}_{ \pm} \subset \sigma(A)$, or $\mathbb{C}_{ \pm} \cap \sigma(A)=\emptyset$.
Using the closedness of the spectrum (Theorem 1.10 (ii)) we conclude in the first case that only the three possibilities i), $i i$) and $i v$) can occur. In the latter case only possibility $i i i$), which proves the characterisation of the spectra.

To prove the equivalence, let us first assume A is self-adjoint. Then by Proposition 1.16 (iii) we know $\sigma(A) \subset \mathbb{R}$ and therefore

$$
\begin{equation*}
\operatorname{ker}\left(A^{*} \pm \mathbf{i} \mathbf{i d}\right)=\operatorname{ran}(A \mp \mathbf{i} \mathbf{i d})^{\perp}=H^{\perp}=\{0\} . \tag{1.1}
\end{equation*}
$$

So one directions holds. To prove the converse direction, assume $\operatorname{ker}\left(A^{*} \pm \mathbf{i} i d\right)=\{0\}$, which implies (since the range is closed)

$$
\begin{equation*}
\operatorname{ran}(A \pm \mathbf{i} \mathbf{i d})=\operatorname{ker}\left(A^{*} \mp \mathbf{i} i d\right)^{\perp}=H . \tag{1.2}
\end{equation*}
$$

So $A \pm \mathbf{i}$ id is surjective. Using Proposition 1.16 (ii) then implies that A is self-adjoint.

Exercise 3.2

Let X and Y be Banach spaces. Let $T \in \mathcal{L}(X, Y)$ and $T^{\prime} \in \mathcal{L}\left(Y^{\prime}, X^{\prime}\right)$ be its adjoint.
a) Show that $\|T\|_{\mathcal{L}(X, Y)}=\left\|T^{\prime}\right\|_{\mathcal{L}\left(Y^{\prime}, X^{\prime}\right)}$.
b) Show that T is a compact operator if and only if T^{\prime} is a compact operator.

Hint: Statement b) is the statement of Proposition 1.26 (iii). You are allowed to use the remaining statements of that proposition for this exercise.

Proof:

a) Let $x \in X$ and $y^{\prime} \in Y^{\prime}$, then it holds

$$
\begin{equation*}
\left|\left\langle T^{\prime} y^{\prime}, x\right\rangle\right|=\left|\left\langle y^{\prime}, T x\right\rangle\right| \leq\|T\|_{\mathcal{L}(X, Y)}\left\|y^{\prime}\right\|_{Y^{\prime}}\|x\|_{X} . \tag{2.1}
\end{equation*}
$$

Therefore $\left\|T^{\prime} y^{\prime}\right\|_{X^{\prime}} \leq\|T\|_{(X, Y)}\left\|y^{\prime}\right\|$ and thus $\|T\|_{\mathcal{L}(X, Y)} \geq\left\|T^{\prime}\right\|_{\mathcal{L}\left(Y^{\prime}, X^{\prime}\right)}$.
Similarly we have

$$
\begin{equation*}
\left|\left\langle y^{\prime}, T x\right\rangle\right|=\left|\left\langle T^{\prime} y^{\prime}, x\right\rangle\right| \leq\left\|T^{\prime}\right\|_{\mathcal{L}\left(Y^{\prime}, X^{\prime}\right)}\left\|y^{\prime}\right\|_{Y^{\prime}}\|x\|_{X} . \tag{2.2}
\end{equation*}
$$

If $T x=0$, then we have nothing to show. If $T x \neq 0$, then by the Hahn-Banach theorem there exists $z \in Y^{\prime}$ such that $\|z\|_{Y^{\prime}}=1$ and $\langle z, T x\rangle=\|T x\|_{Y}$. Substituting $y^{\prime}=z$ in (2.2) results in

$$
\begin{equation*}
\|T x\|_{Y} \leq\left\|T^{\prime}\right\|_{\mathcal{L}\left(Y^{\prime}, X^{\prime}\right)}\|x\|_{X}, \tag{2.3}
\end{equation*}
$$

and thus $\|T\|_{\mathcal{L}(X, Y)} \leq\left\|T^{\prime}\right\|_{\mathcal{L}\left(Y^{\prime}, X^{\prime}\right)}$. Altogether the claim follows.
b) Let T be a compact operator. Then by Proposition 1.26 (ii) we can find a sequence of compact operators of finite $\operatorname{rank}\left(T_{n}\right)_{n}$ such that $T_{n} \rightarrow T$ in $\mathcal{L}(X, Y)$. Then the adjoints T_{n}^{\prime} are also compact operators of finite rank for all $n \in \mathbb{N}$ and we have with the help of a) that $\left\|T^{\prime}-T_{n}^{\prime}\right\|_{\mathcal{L}\left(Y^{\prime}, X^{\prime}\right)}=$ $\left\|T-T_{n}\right\|_{\mathcal{L}(X, Y)}$. So we can approximate T^{\prime} by compact operators of finite rank and thus T^{\prime} is a compact operator.
Conversely, assume T^{\prime} is a compact operator. As previously shown, it follows that $\left(T^{\prime}\right)^{\prime}$ is a compact operator. But $\left(T^{\prime}\right)^{\prime}$ is an extension of T, so T is a compact operator.

Exercise 3.3

Let H be a Hilbert space and let $A \in \mathcal{L}(H)$ be self-adjoint. Show that

$$
\begin{equation*}
\|A\|=\sup _{\lambda \in \sigma(A)}|\lambda|=\sup _{\|x\|=1}|(x, A x)| . \tag{3.1}
\end{equation*}
$$

Hint: Exercise 1.4 might be helpful. Use that $4 \Re(x, A y)=(x+y, A x+A y)-(x-y, A x-A y)$ and the parallelogram law to deduce

$$
|(x, A y)| \leq \sup _{\|z\|=1}|(z, A z)|
$$

for $x, y \in H$ such that $\|x\|=\|y\|=1$.

Proof: For self-adjoint operators it holds ${ }^{1}\left\|A^{2}\right\|=\|A\|^{2}$ and therefore $\left\|A^{2^{n}}\right\|=\|A\|^{2^{n}}$ for all $n \in \mathbb{N}$. From Exercise 1.4 we know that

$$
\begin{equation*}
\sup _{\lambda \in \sigma(A)}|\lambda|=\lim _{m \rightarrow \infty}\left\|A^{m}\right\|^{\frac{1}{m}}=\lim _{n \rightarrow \infty}\left\|A^{2^{n}}\right\|^{2^{-n}}=\|A\| . \tag{3.2}
\end{equation*}
$$

Moreover it holds

$$
\begin{equation*}
|(x, A x)| \leq\|A\|\|x\|^{2} \quad \Longrightarrow \quad \sup _{\|x\|=1}|(x, A x)| \leq\|A\| . \tag{3.3}
\end{equation*}
$$

So it remains to show the reverse inequality. For this purpose, let $\alpha>0$ and $x \in H$ with $x \notin \operatorname{ker}(A)$. Then we can compute

$$
\begin{equation*}
\left(A\left(\alpha x \pm \frac{1}{\alpha} A x\right), \alpha x \pm \frac{1}{\alpha} A x\right)=(A(\alpha x), \alpha x)+\left(A^{2}\left(\frac{1}{\alpha} x\right), A\left(\frac{1}{\alpha} x\right)\right) \pm 2\|A x\|^{2} . \tag{3.4}
\end{equation*}
$$

Taking the difference of those two equations results in the polarisation identity

$$
\begin{equation*}
4\|A x\|^{2}=\left(A\left(\alpha x+\frac{1}{\alpha} A x\right), \alpha x+\frac{1}{\alpha} A x\right)-\left(A\left(\alpha x-\frac{1}{\alpha} A x\right), \alpha x-\frac{1}{\alpha} A x\right) . \tag{3.5}
\end{equation*}
$$

For simplicity, define the following quantities:

$$
\begin{equation*}
s:=\sup _{\|x\|=1}|(x, A x)|, \quad \quad u_{ \pm}:=\alpha x \pm \frac{1}{\alpha} A x, \quad \quad \tilde{u}_{ \pm}:=\frac{u_{ \pm}}{\left\|u_{ \pm}\right\|} \tag{3.6}
\end{equation*}
$$

Note that $u_{ \pm} \neq 0$, from which we conclude that $\tilde{u}_{ \pm}$is well defined with $\left\|\tilde{u}_{ \pm}\right\|=1$. We obtain from (3.5) together with the parallelogramm law

$$
\begin{align*}
4\|A x\|^{2} & =\left\|u_{+}\right\|^{2}\left(A \tilde{u}_{+}, \tilde{u}_{+}\right)-\left\|u_{-}\right\|^{2}\left(A \tilde{u}_{-}, \tilde{u}_{-}\right) \tag{3.7}\\
& \leq s\left(\left\|u_{+}\right\|^{2}+\left\|u_{-}\right\|^{2}\right) \tag{3.8}\\
& =2 s\left(\alpha^{2}\|x\|^{2}+\frac{1}{\alpha^{2}}\|A x\|^{2}\right) . \tag{3.9}
\end{align*}
$$

Now choosing $\alpha=\frac{\|A x\|}{\|x\|}$ results in

$$
\begin{equation*}
4\|A x\|^{2} \leq 4 s\|A x\|\|x\|, \tag{3.10}
\end{equation*}
$$

from which the claim follows.

[^0]
Exercise 3.4

For a Hilbert space H and a non-negative operator $A \in \mathcal{L}(H)$ recall the notation $|A|:=\left(A^{*} A\right)^{\frac{1}{2}}$. Let $H=\mathbb{C}^{2}$ and define the matrices $X, Y \in \mathcal{L}(H)$ via

$$
X:=\left(\begin{array}{rr}
1 & 0 \tag{4.1}\\
0 & -1
\end{array}\right), \quad Y:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

a) Compute $|X+i d|$ and $|Y-i d|$.
b) Show that it does not hold $|(X+i d)+(Y-i d)| \leq|X+i d|+|Y-i d|$.

Proof:

a) Since X, Y and id are symmetric and have entries in \mathbb{R}, it holds $(X+\mathrm{id})^{*}=X+\mathrm{id}$ and $(Y-\mathrm{id})^{*}=Y-\mathrm{id}$. We compute

$$
(X+\mathrm{id})^{2}=4\left(\begin{array}{ll}
1 & 0 \tag{4.2}\\
0 & 0
\end{array}\right), \quad(Y-\mathrm{id})^{2}=\left(\begin{array}{rr}
2 & -2 \\
-2 & 2
\end{array}\right)
$$

So we get the desired quantities by taking the operator square root. Notice that we want the square root to be ≥ 0. We get

$$
|X+\mathrm{id}|=2\left(\begin{array}{cc}
1 & 0 \tag{4.3}\\
0 & 0
\end{array}\right), \quad|Y-\mathrm{id}|=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) .
$$

b) We need to compute

$$
|X+Y|=\sqrt{\left(\begin{array}{ll}
2 & 0 \tag{4.4}\\
0 & 2
\end{array}\right)}=\sqrt{2} \mathrm{id}
$$

Now it holds

$$
|X+\mathrm{id}|+|Y-\mathrm{id}|-|X+Y|=\left(\begin{array}{cc}
3-\sqrt{2} & -1 \tag{4.5}\\
-1 & 1-\sqrt{2}
\end{array}\right) .
$$

We compute the eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=-2(\sqrt{2}-1)$. Therefore the matrix is indefinite and thus it does not hold $\mid(X+$ id $)+(Y-i d)|\leq|X+i d|+|Y-i d|$.

[^0]: ${ }^{1}$ Follows from $\left\|A^{2}\right\|=\sup _{\|x\|=1}\left(A^{2} x, x\right)=\sup _{\|x\|=1}\|A x\|^{2}=\|A\|^{2}$.

