Functional Analysis 2 - Exercise Sheet 2

Winter term 2019/20, University of Heidelberg

Exercise 2.1

Let H be a separable Hilbert space and let $A: \mathcal{D}(A) \longrightarrow H$ and $B: \mathcal{D}(B) \longrightarrow H$ be two symmetric operators such that $A \subset B$. Show that $B^{*} \subset A^{*}$ and conclude that any symmetric extension of a self-adjoint operator is the operator itself.

Proof: We know that $B \subset B^{*}$, and therefore

$$
\begin{equation*}
\mathcal{D}(A) \subset \mathcal{D}(B) \subset \mathcal{D}\left(B^{*}\right)=\{y \in H: \exists \tilde{y} \in H:(B x, y)=(x, \tilde{y}) \forall x \in \mathcal{D}(B)\} \tag{1.1}
\end{equation*}
$$

Let $y \in \mathcal{D}\left(B^{*}\right)$, then we have $(B x, y)=\left(x, B^{*} y\right)$ for all $x \in \mathcal{D}(B)$, and therefore for all $x \in \mathcal{D}(A)$. Hence there exists $z=B^{*} y \in H$ such that

$$
\begin{equation*}
(A x, y)=(B x, y)=(x, z) \quad \text { for all } x \in \mathcal{D}(A) \tag{1.2}
\end{equation*}
$$

This implies $y \in \mathcal{D}\left(A^{*}\right)$, so $\mathcal{D}\left(B^{*}\right) \subset \mathcal{D}\left(A^{*}\right)$. The preceeding argument also shows $B^{*}=A^{*}$ in $\mathcal{D}\left(B^{*}\right)$, so that $B^{*} \subset A^{*}$. Altogether we have the following chains:

$$
\begin{equation*}
\mathcal{D}(A) \subset \mathcal{D}(B) \subset \mathcal{D}\left(B^{*}\right) \subset \mathcal{D}\left(A^{*}\right), \quad A \subset B \subset B^{*} \subset A^{*} \tag{1.3}
\end{equation*}
$$

Now, if A is self-adjoint, then we have $\mathcal{D}(A)=\mathcal{D}\left(A^{*}\right)$ and so all " \subset " in (1.3) become " $=$ " which proves the claim.

Exercise 2.2

Let H be a Hilbert space and $A: \mathcal{D}(A) \longrightarrow H$ be a symmetric and closed operator. In this exercise we want to show that the function $\lambda \longmapsto \operatorname{dim} \operatorname{ker}\left(A^{*}-\lambda\right.$ id $)$ is constant on the half spaces $\mathbb{C}_{ \pm}:=$ $\{\lambda \in \mathbb{C}: \pm \Im(\lambda)>0\}$. We will restrict ourselves to the upper halfspace \mathbb{C}_{+}, the argument for \mathbb{C}_{-}is analogueous.
a) Let $M, N \subset H$ be closed subspaces such that $M \cap N^{\perp}=\{0\}$. Show that $\operatorname{dim} M \leq \operatorname{dim} N$.
b) Let $\lambda \in \mathbb{C}$ such that $\Im(\lambda) \neq 0$. Show that $\operatorname{ran}(A-\lambda i d)$ is closed.
c) Let $\lambda \in \mathbb{C}_{+}$and $\mu \in \mathbb{C}$ such that $|\lambda-\mu|<\Im(\lambda)$. Show that $\operatorname{ker}\left(A^{*}-\mu \mathrm{id}\right) \cap \operatorname{ker}\left(A^{*}-\lambda \mathrm{id}\right)^{\perp}=\{0\}$.
d) Show that $\lambda \longmapsto \operatorname{dim}\left(A^{*}-\lambda \mathrm{id}\right)$ is locally constant on \mathbb{C}_{+}and conclude that this map is actually constant on the whole halfspace \mathbb{C}_{+}.

Hint: Recall the identity $\|(A-\lambda \mathrm{id}) x\|^{2}=\|(A-\Re(\lambda) \mathrm{id}) x\|^{2}+\Im(\lambda)^{2}\|x\|^{2}$. You can use that it holds $\operatorname{ran}\left(A^{*}\right)^{\perp}=\operatorname{ker}(A)$ for closed operators. In order to show c) use an indirect proof.

Proof: Let us first recall that for $\lambda=\alpha+\mathbf{i} \beta$ and $x \in \mathcal{D}(A)$ we have

$$
\begin{equation*}
\|(A-\lambda \mathrm{id}) x\|^{2}=\|(A-\alpha \mathrm{id}) x-\mathbf{i} \beta x\|^{2}=\|(A-\alpha \mathrm{id}) x\|^{2}+\beta^{2}\|x\|^{2}+2 \Re[\mathbf{i}((A-\alpha \mathrm{id}) x, \beta x)] \tag{2.1}
\end{equation*}
$$

Since A is symmetric we have $(x, A x) \in \mathbb{R}$ for all $x \in H$ and therefore

$$
\begin{equation*}
((A-\alpha \mathrm{id}) x, \beta x)=\beta(A x, x)-\alpha \beta\|x\|^{2} \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

which means $\Re[\mathbf{i}((A-\alpha$ id $) x, \beta x)]=0$ and it holds

$$
\begin{equation*}
\|(A-\lambda \mathrm{id}) x\|^{2}=\|(A-\alpha \mathrm{id}) x\|^{2}+\beta^{2}\|x\|^{2} \quad \text { for all } x \in H \tag{2.3}
\end{equation*}
$$

a) Let $\mathbb{P}: H \longrightarrow N$ be the orthogonal projection and define the map $T: M \longrightarrow N$ via $T x:=\mathbb{P} x$ for all $x \in M$. We want to show that T is injective and we choose $x, y \in M$ such that $x \neq y$, or $x-y \neq 0$. By assumption $x-y \notin N^{\perp}$ and therefore $T(x-y) \neq 0$, so that T is injective. Now given a linear subspace of $L \subset M$ we have $\operatorname{dim} L=\operatorname{dim} T L \leq \operatorname{dim} N$, so that $\operatorname{dim} M \leq \operatorname{dim} N$ (in case N is infinite dimensional, otherwise the statement is clear).
b) Using (2.3) we see $\|(A-\lambda \mathrm{id}) x\|^{2} \geq \Im(\lambda)^{2}\|x\|^{2}$. Now let $\left(x_{n}\right)_{n} \subset \mathcal{D}(A)$ such that $(A-\lambda$ id $) x_{n} \rightarrow y$. By the preceeding inequality we obtain that $\left(x_{n}\right)_{n}$ is a Cauchy-sequence and is therefore convergent with say limit $x \in H$. Since A is closed we obtain that $y=(A-\lambda \mathrm{id}) x \in \operatorname{ran}(A-\lambda \mathrm{id})$ which shows the closedness.
c) Let $\beta:=\Im(\lambda)$. We assume the contrary: let $0 \neq x \in \operatorname{ker}\left(A^{*}-\mu \mathrm{id}\right) \cap \operatorname{ker}\left(A^{*}-\lambda \mathrm{id}\right)^{\perp}$. We can renomalise x such that $\|x\|=1$. Using b) and the hint we know that $\operatorname{ker}\left(A^{*}-\lambda \mathrm{id}\right)^{\perp}=\operatorname{ran}(A-\bar{\lambda} \mathrm{id})$, so we can find $y \in \mathcal{D}(A)$ such that $x=(A-\bar{\lambda} \mathrm{id}) y$. Since $x \in \operatorname{ker}\left(A^{*}-\mu \mathrm{id}\right)$ we have

$$
\begin{align*}
0 & =\left(\left(A^{*}-\mu \mathrm{id}\right) x, y\right)=(x,(A-\bar{\mu} \text { id }) y) \tag{2.4}\\
& =(x,(A-\bar{\lambda}+\bar{\lambda}-\bar{\mu} \text { id }) y) \tag{2.5}\\
& =\|x\|^{2}+(\lambda-\mu)(x, y)+(x,(A-\bar{\lambda} \text { id }) y) \tag{2.6}\\
& =\|x\|^{2}+(\lambda-\mu)(x, y) \tag{2.7}
\end{align*}
$$

since $x \in \operatorname{ker}\left(A^{*}-\lambda \mathrm{id}\right)^{\perp}$ by assumption.
Now, on the one hand we have using the Cauchy-Schwarz inequality

$$
\begin{equation*}
1=\|x\|^{2} \leq|\mu-\lambda||(x, y)| \leq|\mu-\lambda|\|x\|\|y\|<\beta\|y\| \quad \Longrightarrow \quad\|y\|>\frac{1}{\beta} \tag{2.8}
\end{equation*}
$$

On the other hand we obtain by (2.3)

$$
\begin{equation*}
1=\|x\|=\|(A-\bar{\lambda} \mathrm{id}) y\| \geq \beta\|y\| \quad \Longrightarrow \quad\|y\| \leq \frac{1}{\beta} . \tag{2.9}
\end{equation*}
$$

So (2.8) and (2.9) are contradicting each other and therefore the claim holds.
d) Using c) we obtain $\operatorname{dim} \operatorname{ker}\left(A^{*}-\mu \mathrm{id}\right) \leq \operatorname{dim} \operatorname{ker}\left(A^{*}-\lambda i d\right)$ provided $|\lambda-\mu|<\Im(\lambda)$. Interchanging the role of λ and μ shows that $\operatorname{dim} \operatorname{ker}\left(A^{*}-\mu \mathrm{id}\right)=\operatorname{dim} \operatorname{ker}\left(A^{*}-\lambda\right.$ id $)$ locally. Since \mathbb{C}_{+}is a connected subset of \mathbb{C} we get the claim.

Exercise 2.3

Let $\mathcal{H}:=L^{2}((0,1), \mathbb{C}), \mathcal{D}(A):=H_{0}^{2}((0,1), \mathbb{C})$ and $\mathcal{D}(B):=H_{0}^{1}((0,1), \mathbb{C})$. Let $\varepsilon>0$ and define the operators $A: \mathcal{D}(A) \longrightarrow \mathcal{H}$ and $B: \mathcal{D}(B) \longrightarrow \mathcal{H}$ via

$$
\begin{equation*}
A:=-\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2}, \quad B:=\mathbf{i} \varepsilon \frac{\mathrm{d}}{\mathrm{~d} x} \tag{3.1}
\end{equation*}
$$

Show that $A+B: \mathcal{D}(A) \longrightarrow \mathcal{H}$ is a self-adjoint operator.

Proof: From Example 1.21 we know that A is a self-adjoint operator. Using integration by parts we also see that for $f, g \in \mathcal{D}(B)$

$$
\begin{equation*}
(B f, g)=\mathbf{i} \varepsilon \int_{0}^{1} f^{\prime}(x) \bar{g}(x) \mathrm{d} x=[f(1) \bar{g}(1)-f(0) \bar{g}(0)]-\mathbf{i} \varepsilon \int_{0}^{1} f(x) \bar{g}^{\prime}(x) \mathrm{d} x=(f, B g) . \tag{3.2}
\end{equation*}
$$

So B is a symmetric operator. We want to use the theorem of Kato-Rellich, so it remains to show that B is A - continuous. For this purpose, let $f \in \mathcal{D}(A)$. We compute

$$
\begin{align*}
\|B f\|^{2} & =\varepsilon^{2} \int_{0}^{1}\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x=\varepsilon^{2} \int_{0}^{1} f^{\prime}(x) \bar{f}^{\prime}(x) \mathrm{d} x \tag{3.3}\\
& =\varepsilon^{2}\left[f^{\prime}(1) \bar{f}(1)-f^{\prime}(0) \bar{f}(0)\right]-\varepsilon^{2} \int_{0}^{1} f^{\prime \prime}(x) \bar{f}(x) \mathrm{d} x \tag{3.4}\\
& =\varepsilon^{2}(A f, f) \leq \varepsilon^{2}\|A f\|\|f\| . \tag{3.5}
\end{align*}
$$

Now let $0<\delta<\frac{\varepsilon^{2}}{2}$. Then we can use Young's inequality (with $p=q=2$) to obtain

$$
\begin{equation*}
\varepsilon^{2}\|A f\|\|f\|=\delta \varepsilon^{2}\|A f\| \frac{1}{\delta}\|f\| \leq \frac{1}{2}\left(\delta^{2} \varepsilon^{4}\|A f\|^{2}+\frac{1}{\delta^{2}}\|f\|^{2}\right)<\frac{1}{4}\|A f\|^{2}+C_{\delta}^{2}\|f\|^{2} \tag{3.6}
\end{equation*}
$$

where $C_{\delta}^{2}:=\left(2 \delta^{2}\right)^{-1}$. Taking the square root we obtain

$$
\begin{equation*}
\|B f\| \leq \frac{1}{2}\|A f\|+C_{\delta}\|f\| \quad \text { for all } f \in \mathcal{D}(A) \tag{3.7}
\end{equation*}
$$

Using the theorem of Kato-Rellich proves the claim.

Exercise 2.4

Let $H=L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$ and $A:=\mathcal{D}(A) \longrightarrow H$ be a self-adjoint operator. Let $\psi \in C^{1}([0, \infty), \mathcal{D}(A))$ be a solution to the time-dependent homogeneous Schrödinger equation

$$
\begin{equation*}
\mathbf{i} \frac{\mathrm{d}}{\mathrm{~d} t} \psi(t)=A \psi(t) \quad \text { for all } t>0 \tag{4.1}
\end{equation*}
$$

with initial data $\psi(0)=\psi_{0} \in \mathcal{D}(A)$. Let $\left\|\psi_{0}\right\|=1$. Show that $\|\psi(t)\|=1$ for all $t>0$.

Proof: We see that

$$
\begin{equation*}
-\mathbf{i} \frac{\mathrm{d}}{\mathrm{~d} t}\|\psi(t)\|^{2}=(\psi(t), A \psi(t))=(A \psi(t), \psi(t))=\mathbf{i} \frac{\mathrm{d}}{\mathrm{~d} t}\|\psi(t)\|^{2} \tag{4.2}
\end{equation*}
$$

so that $\frac{\mathrm{d}}{\mathrm{d} t}\|\psi(t)\|^{2}=0$, which means $t \longmapsto\|\psi(t)\|$ is constant. Since $\left\|\psi_{0}\right\|=1$ we conclude that $\|\psi(t)\|=1$ for almost all $t>0$.

