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Exercise 2.1
Let H be a separable Hilbert space and let A : D(A) −→ H and B : D(B) −→ H be two symmetric
operators such that A ⊂ B. Show that B∗ ⊂ A∗ and conclude that any symmetric extension of a
self-adjoint operator is the operator itself.

Proof: We know that B ⊂ B∗, and therefore

D(A) ⊂ D(B) ⊂ D(B∗) =
{
y ∈ H : ∃ỹ ∈ H : (Bx, y) = (x, ỹ) ∀x ∈ D(B)

}
. (1.1)

Let y ∈ D(B∗), then we have (Bx, y) = (x,B∗y) for all x ∈ D(B), and therefore for all x ∈ D(A).
Hence there exists z = B∗y ∈ H such that

(Ax, y) = (Bx, y) = (x, z) for all x ∈ D(A). (1.2)

This implies y ∈ D(A∗), so D(B∗) ⊂ D(A∗). The preceeding argument also shows B∗ = A∗ in D(B∗),
so that B∗ ⊂ A∗. Altogether we have the following chains:

D(A) ⊂ D(B) ⊂ D(B∗) ⊂ D(A∗), A ⊂ B ⊂ B∗ ⊂ A∗. (1.3)

Now, if A is self-adjoint, then we have D(A) = D(A∗) and so all ”⊂” in (1.3) become ”=” which proves
the claim. �
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Exercise 2.2
Let H be a Hilbert space and A : D(A) −→ H be a symmetric and closed operator. In this exercise
we want to show that the function λ 7−→ dim ker(A∗ − λ id) is constant on the half spaces C± :=
{λ ∈ C : ±=(λ) > 0}. We will restrict ourselves to the upper halfspace C+, the argument for C− is
analogueous.

a) Let M,N ⊂ H be closed subspaces such that M ∩N⊥ = {0}. Show that dimM ≤ dimN .

b) Let λ ∈ C such that =(λ) 6= 0. Show that ran(A− λ id) is closed.

c) Let λ ∈ C+ and µ ∈ C such that |λ−µ| < =(λ). Show that ker(A∗−µ id)∩ker(A∗−λ id)⊥ = {0}.

d) Show that λ 7−→ dim(A∗− λ id) is locally constant on C+ and conclude that this map is actually
constant on the whole halfspace C+.

Hint: Recall the identity ‖(A− λ id)x‖2 = ‖(A−<(λ) id)x‖2 + =(λ)2 ‖x‖2. You can use that it holds
ran(A∗)⊥ = ker(A) for closed operators. In order to show c) use an indirect proof.

Proof: Let us first recall that for λ = α+ iβ and x ∈ D(A) we have

‖(A− λ id)x‖2 = ‖(A− α id)x− iβ x‖2 = ‖(A− α id)x‖2 + β2‖x‖2 + 2<[i ((A− α id)x, βx)]. (2.1)

Since A is symmetric we have (x,Ax) ∈ R for all x ∈ H and therefore

((A− α id)x, βx) = β(Ax, x)− αβ‖x‖2 ∈ R, (2.2)

which means <[i ((A− α id)x, βx)] = 0 and it holds

‖(A− λ id)x‖2 = ‖(A− α id)x‖2 + β2‖x‖2 for all x ∈ H. (2.3)

a) Let P : H −→ N be the orthogonal projection and define the map T : M −→ N via Tx := Px
for all x ∈M . We want to show that T is injective and we choose x, y ∈M such that x 6= y, or
x− y 6= 0. By assumption x− y /∈ N⊥ and therefore T (x− y) 6= 0, so that T is injective. Now
given a linear subspace of L ⊂ M we have dimL = dimTL ≤ dimN , so that dimM ≤ dimN
(in case N is infinite dimensional, otherwise the statement is clear).

b) Using (2.3) we see ‖(A−λ id)x‖2 ≥ =(λ)2 ‖x‖2. Now let (xn)n ⊂ D(A) such that (A−λ id)xn → y.
By the preceeding inequality we obtain that (xn)n is a Cauchy-sequence and is therefore convergent
with say limit x ∈ H. Since A is closed we obtain that y = (A − λ id)x ∈ ran(A − λ id) which
shows the closedness.

c) Let β := =(λ). We assume the contrary: let 0 6= x ∈ ker(A∗ − µ id) ∩ ker(A∗ − λ id)⊥. We can
renomalise x such that ‖x‖ = 1. Using b) and the hint we know that ker(A∗−λ id)⊥ = ran(A−λ̄ id),
so we can find y ∈ D(A) such that x = (A− λ̄ id)y. Since x ∈ ker(A∗ − µ id) we have

0 = ((A∗ − µ id)x, y) = (x, (A− µ̄ id)y) (2.4)

= (x, (A− λ̄+ λ̄− µ̄ id)y) (2.5)

= ‖x‖2 + (λ− µ) (x, y) + (x, (A− λ̄ id)y) (2.6)

= ‖x‖2 + (λ− µ) (x, y) (2.7)

since x ∈ ker(A∗ − λ id)⊥ by assumption.
Now, on the one hand we have using the Cauchy-Schwarz inequality

1 = ‖x‖2 ≤ |µ− λ| |(x, y)| ≤ |µ− λ| ‖x‖ ‖y‖ < β ‖y‖ =⇒ ‖y‖ > 1

β
. (2.8)
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On the other hand we obtain by (2.3)

1 = ‖x‖ = ‖(A− λ̄ id)y‖ ≥ β ‖y‖ =⇒ ‖y‖ ≤ 1

β
. (2.9)

So (2.8) and (2.9) are contradicting each other and therefore the claim holds.

d) Using c) we obtain dim ker(A∗−µ id) ≤ dim ker(A∗−λ id) provided |λ−µ| < =(λ). Interchanging
the role of λ and µ shows that dim ker(A∗ − µ id) = dim ker(A∗ − λ id) locally. Since C+ is a
connected subset of C we get the claim. �
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Exercise 2.3
Let H := L2((0, 1),C), D(A) := H2

0 ((0, 1),C) and D(B) := H1
0 ((0, 1),C). Let ε > 0 and define the

operators A : D(A) −→ H and B : D(B) −→ H via

A := −
( d

dx

)2
, B := iε

d

dx
. (3.1)

Show that A+B : D(A) −→ H is a self-adjoint operator.

Proof: From Example 1.21 we know that A is a self-adjoint operator. Using integration by parts we
also see that for f, g ∈ D(B)

(Bf, g) = iε

∫ 1

0
f ′(x) ḡ(x) dx = [f(1) ḡ(1)− f(0) ḡ(0)]− iε

∫ 1

0
f(x) ḡ′(x) dx = (f,Bg). (3.2)

So B is a symmetric operator. We want to use the theorem of Kato-Rellich, so it remains to show that
B is A – continuous. For this purpose, let f ∈ D(A). We compute

‖Bf‖2 = ε2
∫ 1

0
|f ′(x)|2 dx = ε2

∫ 1

0
f ′(x) f̄ ′(x) dx (3.3)

= ε2[f ′(1) f̄(1)− f ′(0) f̄(0)]− ε2
∫ 1

0
f ′′(x) f̄(x) dx (3.4)

= ε2(Af, f) ≤ ε2‖Af‖ ‖f‖. (3.5)

Now let 0 < δ < ε2

2 . Then we can use Young’s inequality (with p = q = 2) to obtain

ε2‖Af‖ ‖f‖ = δε2‖Af‖ 1

δ
‖f‖ ≤ 1

2

(
δ2 ε4 ‖Af‖2 +

1

δ2
‖f‖2

)
<

1

4
‖Af‖2 + C2

δ ‖f‖2, (3.6)

where C2
δ := (2δ2)−1. Taking the square root we obtain

‖Bf‖ ≤ 1

2
‖Af‖+ Cδ ‖f‖ for all f ∈ D(A). (3.7)

Using the theorem of Kato-Rellich proves the claim. �
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Exercise 2.4
Let H = L2(Rn,C) and A := D(A) −→ H be a self-adjoint operator. Let ψ ∈ C1([0,∞),D(A)) be a
solution to the time-dependent homogeneous Schrödinger equation

i
d

dt
ψ(t) = Aψ(t) for all t > 0 (4.1)

with initial data ψ(0) = ψ0 ∈ D(A). Let ‖ψ0‖ = 1. Show that ‖ψ(t)‖ = 1 for all t > 0.

Proof: We see that

−i d

dt
‖ψ(t)‖2 = (ψ(t), Aψ(t)) = (Aψ(t), ψ(t)) = i

d

dt
‖ψ(t)‖2, (4.2)

so that d
dt‖ψ(t)‖2 = 0, which means t 7−→ ‖ψ(t)‖ is constant. Since ‖ψ0‖ = 1 we conclude that

‖ψ(t)‖ = 1 for almost all t > 0. �
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