Functional Analysis 2 – Exercise Sheet 2

Winter term 2019/20, University of Heidelberg

Exercise 2.1

Let H be a separable Hilbert space and let $A: \mathcal{D}(A) \longrightarrow H$ and $B: \mathcal{D}(B) \longrightarrow H$ be two symmetric operators such that $A \subset B$. Show that $B^* \subset A^*$ and conclude that any symmetric extension of a self-adjoint operator is the operator itself.

<u>Proof:</u> We know that $B \subset B^*$, and therefore

$$\mathcal{D}(A) \subset \mathcal{D}(B) \subset \mathcal{D}(B^*) = \left\{ y \in H : \exists \tilde{y} \in H : (Bx, y) = (x, \tilde{y}) \ \forall x \in \mathcal{D}(B) \right\}.$$
 (1.1)

Let $y \in \mathcal{D}(B^*)$, then we have $(Bx, y) = (x, B^*y)$ for all $x \in \mathcal{D}(B)$, and therefore for all $x \in \mathcal{D}(A)$. Hence there exists $z = B^*y \in H$ such that

$$(Ax, y) = (Bx, y) = (x, z) \qquad \text{for all } x \in \mathcal{D}(A). \tag{1.2}$$

This implies $y \in \mathcal{D}(A^*)$, so $\mathcal{D}(B^*) \subset \mathcal{D}(A^*)$. The preceding argument also shows $B^* = A^*$ in $\mathcal{D}(B^*)$, so that $B^* \subset A^*$. Altogether we have the following chains:

$$\mathcal{D}(A) \subset \mathcal{D}(B) \subset \mathcal{D}(B^*) \subset \mathcal{D}(A^*), \qquad A \subset B \subset B^* \subset A^*.$$
(1.3)

Now, if A is self-adjoint, then we have $\mathcal{D}(A) = \mathcal{D}(A^*)$ and so all " \subset " in (1.3) become "=" which proves the claim.

Exercise 2.2

Let *H* be a Hilbert space and $A: \mathcal{D}(A) \longrightarrow H$ be a symmetric and closed operator. In this exercise we want to show that the function $\lambda \longmapsto \dim \ker(A^* - \lambda \operatorname{id})$ is constant on the half spaces $\mathbb{C}_{\pm} := \{\lambda \in \mathbb{C} : \pm \Im(\lambda) > 0\}$. We will restrict ourselves to the upper halfspace \mathbb{C}_+ , the argument for \mathbb{C}_- is analogueous.

- a) Let $M, N \subset H$ be closed subspaces such that $M \cap N^{\perp} = \{0\}$. Show that dim $M \leq \dim N$.
- b) Let $\lambda \in \mathbb{C}$ such that $\Im(\lambda) \neq 0$. Show that $\operatorname{ran}(A \lambda \operatorname{id})$ is closed.
- c) Let $\lambda \in \mathbb{C}_+$ and $\mu \in \mathbb{C}$ such that $|\lambda \mu| < \Im(\lambda)$. Show that $\ker(A^* \mu \operatorname{id}) \cap \ker(A^* \lambda \operatorname{id})^{\perp} = \{0\}$.
- d) Show that $\lambda \mapsto \dim(A^* \lambda \operatorname{id})$ is locally constant on \mathbb{C}_+ and conclude that this map is actually constant on the whole halfspace \mathbb{C}_+ .

Hint: Recall the identity $||(A - \lambda \operatorname{id})x||^2 = ||(A - \Re(\lambda) \operatorname{id})x||^2 + \Im(\lambda)^2 ||x||^2$. You can use that it holds $\operatorname{ran}(A^*)^{\perp} = \ker(A)$ for closed operators. In order to show c) use an indirect proof.

<u>Proof:</u> Let us first recall that for $\lambda = \alpha + \mathbf{i}\beta$ and $x \in \mathcal{D}(A)$ we have

$$|(A - \lambda \operatorname{id})x||^{2} = ||(A - \alpha \operatorname{id})x - \mathbf{i}\beta x||^{2} = ||(A - \alpha \operatorname{id})x||^{2} + \beta^{2}||x||^{2} + 2\Re[\mathbf{i}((A - \alpha \operatorname{id})x, \beta x)].$$
(2.1)

Since A is symmetric we have $(x, Ax) \in \mathbb{R}$ for all $x \in H$ and therefore

$$((A - \alpha \operatorname{id})x, \beta x) = \beta(Ax, x) - \alpha \beta \|x\|^2 \in \mathbb{R},$$
(2.2)

which means $\Re[\mathbf{i}((A - \alpha \operatorname{id})x, \beta x)] = 0$ and it holds

$$\|(A - \lambda \operatorname{id})x\|^2 = \|(A - \alpha \operatorname{id})x\|^2 + \beta^2 \|x\|^2 \qquad \text{for all } x \in H.$$
(2.3)

- a) Let $\mathbb{P}: H \longrightarrow N$ be the orthogonal projection and define the map $T: M \longrightarrow N$ via $Tx := \mathbb{P}x$ for all $x \in M$. We want to show that T is injective and we choose $x, y \in M$ such that $x \neq y$, or $x y \neq 0$. By assumption $x y \notin N^{\perp}$ and therefore $T(x y) \neq 0$, so that T is injective. Now given a linear subspace of $L \subset M$ we have dim $L = \dim TL \leq \dim N$, so that dim $M \leq \dim N$ (in case N is infinite dimensional, otherwise the statement is clear).
- b) Using (2.3) we see $||(A \lambda \operatorname{id})x||^2 \ge \Im(\lambda)^2 ||x||^2$. Now let $(x_n)_n \subset \mathcal{D}(A)$ such that $(A \lambda \operatorname{id})x_n \to y$. By the preceeding inequality we obtain that $(x_n)_n$ is a Cauchy-sequence and is therefore convergent with say limit $x \in H$. Since A is closed we obtain that $y = (A - \lambda \operatorname{id})x \in \operatorname{ran}(A - \lambda \operatorname{id})$ which shows the closedness.
- c) Let $\beta := \Im(\lambda)$. We assume the contrary: let $0 \neq x \in \ker(A^* \mu \operatorname{id}) \cap \ker(A^* \lambda \operatorname{id})^{\perp}$. We can renomalise x such that ||x|| = 1. Using b) and the hint we know that $\ker(A^* \lambda \operatorname{id})^{\perp} = \operatorname{ran}(A \overline{\lambda} \operatorname{id})$, so we can find $y \in \mathcal{D}(A)$ such that $x = (A \overline{\lambda} \operatorname{id})y$. Since $x \in \ker(A^* \mu \operatorname{id})$ we have

$$0 = ((A^* - \mu \operatorname{id})x, y) = (x, (A - \overline{\mu} \operatorname{id})y)$$
(2.4)

$$= (x, (A - \bar{\lambda} + \bar{\lambda} - \bar{\mu} \operatorname{id})y)$$
(2.5)

$$= \|x\|^{2} + (\lambda - \mu) (x, y) + (x, (A - \bar{\lambda} \operatorname{id})y)$$
(2.6)

$$= \|x\|^{2} + (\lambda - \mu)(x, y)$$
(2.7)

since $x \in \ker(A^* - \lambda \operatorname{id})^{\perp}$ by assumption.

Now, on the one hand we have using the Cauchy-Schwarz inequality

$$1 = \|x\|^{2} \le |\mu - \lambda| \, |(x, y)| \le |\mu - \lambda| \, \|x\| \, \|y\| < \beta \, \|y\| \implies \|y\| > \frac{1}{\beta}.$$
 (2.8)

On the other hand we obtain by (2.3)

$$1 = \|x\| = \|(A - \bar{\lambda} \operatorname{id})y\| \ge \beta \|y\| \implies \|y\| \le \frac{1}{\beta}.$$
(2.9)

So (2.8) and (2.9) are contradicting each other and therefore the claim holds.

d) Using c) we obtain dim ker $(A^* - \mu \operatorname{id}) \leq \dim \ker(A^* - \lambda \operatorname{id})$ provided $|\lambda - \mu| < \Im(\lambda)$. Interchanging the role of λ and μ shows that dim ker $(A^* - \mu \operatorname{id}) = \dim \ker(A^* - \lambda \operatorname{id})$ locally. Since \mathbb{C}_+ is a connected subset of \mathbb{C} we get the claim.

Exercise 2.3

Let $\mathcal{H} \coloneqq L^2((0,1),\mathbb{C}), \mathcal{D}(A) \coloneqq H^2_0((0,1),\mathbb{C})$ and $\mathcal{D}(B) \coloneqq H^1_0((0,1),\mathbb{C})$. Let $\varepsilon > 0$ and define the operators $A \colon \mathcal{D}(A) \longrightarrow \mathcal{H}$ and $B \colon \mathcal{D}(B) \longrightarrow \mathcal{H}$ via

$$A \coloneqq -\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2, \qquad \qquad B \coloneqq \mathbf{i}\varepsilon \frac{\mathrm{d}}{\mathrm{d}x}. \tag{3.1}$$

Show that $A + B \colon \mathcal{D}(A) \longrightarrow \mathcal{H}$ is a self-adjoint operator.

Proof: From Example 1.21 we know that A is a self-adjoint operator. Using integration by parts we also see that for $f, g \in \mathcal{D}(B)$

$$(Bf,g) = \mathbf{i}\varepsilon \int_0^1 f'(x)\,\bar{g}(x)\,\mathrm{d}x = [f(1)\,\bar{g}(1) - f(0)\,\bar{g}(0)] - \mathbf{i}\varepsilon \int_0^1 f(x)\,\bar{g}'(x)\,\mathrm{d}x = (f,Bg). \tag{3.2}$$

So B is a symmetric operator. We want to use the theorem of Kato-Rellich, so it remains to show that B is A – continuous. For this purpose, let $f \in \mathcal{D}(A)$. We compute

$$||Bf||^{2} = \varepsilon^{2} \int_{0}^{1} |f'(x)|^{2} dx = \varepsilon^{2} \int_{0}^{1} f'(x) \bar{f}'(x) dx$$
(3.3)

$$=\varepsilon^{2}[f'(1)\,\bar{f}(1) - f'(0)\,\bar{f}(0)] - \varepsilon^{2}\int_{0}^{1}f''(x)\,\bar{f}(x)\,\mathrm{d}x \tag{3.4}$$

$$=\varepsilon^{2}(Af,f) \le \varepsilon^{2} \|Af\| \|f\|.$$
(3.5)

Now let $0 < \delta < \frac{\varepsilon^2}{2}$. Then we can use Young's inequality (with p = q = 2) to obtain

$$\varepsilon^{2} \|Af\| \|f\| = \delta \varepsilon^{2} \|Af\| \frac{1}{\delta} \|f\| \le \frac{1}{2} \left(\delta^{2} \varepsilon^{4} \|Af\|^{2} + \frac{1}{\delta^{2}} \|f\|^{2} \right) < \frac{1}{4} \|Af\|^{2} + C_{\delta}^{2} \|f\|^{2},$$
(3.6)

where $C_{\delta}^2 \coloneqq (2\delta^2)^{-1}$. Taking the square root we obtain

$$\|Bf\| \le \frac{1}{2} \|Af\| + C_{\delta} \|f\| \qquad \text{for all } f \in \mathcal{D}(A).$$

$$(3.7)$$

Using the theorem of Kato-Rellich proves the claim.

Exercise 2.4

Let $H = L^2(\mathbb{R}^n, \mathbb{C})$ and $A := \mathcal{D}(A) \longrightarrow H$ be a self-adjoint operator. Let $\psi \in C^1([0, \infty), \mathcal{D}(A))$ be a solution to the time-dependent homogeneous Schrödinger equation

$$\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}t}\psi(t) = A\psi(t) \qquad \qquad \text{for all } t > 0 \qquad (4.1)$$

with initial data $\psi(0) = \psi_0 \in \mathcal{D}(A)$. Let $\|\psi_0\| = 1$. Show that $\|\psi(t)\| = 1$ for all t > 0.

Proof: We see that

$$-\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}t}\|\psi(t)\|^{2} = (\psi(t), A\psi(t)) = (A\psi(t), \psi(t)) = \mathbf{i}\frac{\mathrm{d}}{\mathrm{d}t}\|\psi(t)\|^{2},$$
(4.2)

so that $\frac{d}{dt} \|\psi(t)\|^2 = 0$, which means $t \mapsto \|\psi(t)\|$ is constant. Since $\|\psi_0\| = 1$ we conclude that $\|\psi(t)\| = 1$ for almost all t > 0.