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Exercise 1.1
Let H be a Hilbert space and (xn)n ⊂ H a weakly convergent sequence with limit x ∈ H. Show the
following statements:

a) ‖x‖ ≤ lim inf
n→∞

‖xn‖.

b) If ‖xn‖ → ‖x‖, then it holds xn → x in H strongly.

c) Let (yn)n ⊂ H be a strongly convergent sequence in H with limit y. Show that (xn, yn)→ (x, y).

Proof:

a) Since (xn)n is weakly convergent it is also a bounded sequence so that we can extract a subsequence
(xnj )j such that

lim
j→∞

‖xnj‖ = lim inf
n→∞

‖xn‖. (1.1)

Using the inequality of Cauchy–Schwarz results in

‖x‖2 = (x, x) = lim
n→∞

(x, xn) = lim
j→∞

(x, xnj ) ≤ ‖x‖ lim
j→∞

‖xnj‖ = ‖x‖ lim inf
n→∞

‖xn‖. (1.2)

b) We can compute

‖x− xn‖2 = (x− xn, x− xn) = (x, x)− (x, xn)− (xn, x) + (xn, xn) (1.3)

= ‖x‖2 + ‖xn‖2 − (xn, x)− (x, xn)
n→∞−−−→ 0. (1.4)

The second term in (1.4) converges by assumption and the remaining one by definition of weak
convergence.

c) We can compute

|(xn, yn)− (x, y)| = |(xn, yn)− (xn, y) + (xn, y)− (x, y)| ≤ |(xn, yn − y)|+ |(xn − x, y)|. (1.5)

The second term on the right hand side converges to 0 by definition of weak convegerce. The
first term also converges to 0. Indeed, using the inequality of Cauchy–Schwarz, the assumption
on the convergence and the boundednes of weakly convergent sequences we get

|(xn, yn − y)| ≤ ‖xn‖ ‖yn − y‖ . ‖yn − y‖
n→∞−−−→ 0, (1.6)

from which the claim follows. �
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Exercise 1.2
Let H be a seperable Hilbert space and {wn}n ⊂ H an orthonormal system of pairwise distinct
elements. Let A : H −→ H be a compact operator. Show that Awn → 0 in H strongly.

Proof: Since H is separable we can expand {wn}n to a Hilberstpace basis {v`}` using the method of
Gram–Schmidt. Also, since H is reflexive, we know that weak and weak* convergence are the same.
Now, let x ∈ H be arbitrary, then x can be represented via

x =
∑
`∈N

c` v` (2.1)

for constants c` ∈ K. Necessary for convergence, the sequecen (c`)` converges to 0. So it follows

〈vk, x〉 =
∑
`∈N

c`〈vk, v`〉 = ck
k→∞−−−→ 0. (2.2)

Since x was arbitrary, it follows that {v`}` is weakly convergent to 0 and therefore also {wn}n
as subsequence. Since compact operators map weakly convergent sequences to strongly convergent
sequences, the claim follows.1 �

1C.f. [Alt, Lemma 10.2].
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Exercise 1.3
Let X be a Banach space and A ∈ L(X). In this exercise we want to show that

lim
m→∞

‖Am‖
1
m
X′ = inf

m∈N
‖Am‖

1
m
X′ , (3.1)

in particular, that the limit exists. For this purpose we define the sequence

am := log ‖Am‖X′ for all m ∈ N. (3.2)

a) Show that an+m ≤ an + am for all m,n ∈ N.

b) Let n = mq + r, where n,m, q, r ∈ N and 0 ≤ r ≤ m− 1. Show that

lim sup
n→∞

an
n
≤ am

m
. (3.3)

c) Show that

lim
n→∞

an
n

= inf
n∈N

an
n

(3.4)

and conclude (3.2).

Proof: We denote ‖ · ‖ := ‖ · ‖X′ .

a) Since the operator norm is submultiplicative, we get for n,m ∈ N

an+m = log ‖Am+n‖ ≤ log(‖An‖ ‖Am‖) = log(‖An‖) + log(‖Am‖) = an + am. (3.5)

b) Let n = qm+ r, then we have

an
n

=
aqm+r

n

a)

≤ aqm
n

+
ar
n
. (3.6)

From the subadditivity of the operator norm and the monotonicity of the logarithm we get

aqm = log ‖Aqm‖ ≤ q log ‖Am‖ = q am, ar ≤ r a1, (3.7)

from which follows

(3.6) ≤ am
m

q

q + r
m

+ a1
r

n
. (3.8)

For fixed m, the parameter r is bounded so that for q →∞ we have for the second term a1
r
n → 0.

The factor q
q+ r

m
converges to 1 as q →∞. Altogether, the claim follows.

c) Since every number n ∈ N has a representation as in b), we see that

inf
n∈N

an
n
≤ an

n
≤ lim sup

q→∞

an
n
≤ min

m∈N

am
m
. (3.9)

Using the sandwich lemma implies the claim. �
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Exercise 1.4
Let X be a Banach space and A ∈ L(X). Show that

sup
λ∈σ(A)

|λ| = lim
m→∞

‖Am‖
1
m
X′ . (4.1)

Hint: Compute the radius of convergence of the Laurent series of the resolvent with the formula of
Cauchy-Hadamard for Banach space valued functions and argue why the radius of convergence is given
by the spectral radius. Use the analyticity of the resolvent.

Proof: We denote r(A) for the left hand side and write ‖ · ‖ := ‖ · ‖X′ .

Using Theorem 1.10, the sepcturm σ(A) is compact, and r(A) is therefore finite. Let λ ∈ C and Rλ be
the resolvent of A with respect to λ. Using the Neumann series we get for |λ| > ‖A‖

Rλ = − 1

λ

[
id +

∞∑
k=1

(A
λ

)k]
. (4.2)

This is a Laurent series. Our goal is to determine the inner radius of convergence and to show that
this is equal to r(A) as well as the right hand side of (4.1).

If |λ > r(A), then Rλ is analytic and using Theorem 1.10, we know λ ∈ ρ(A). This implies, that the
series (4.2) converges, the inner radius of convergence must therefore be greater or equal than r(A).

On the other hand, Rλ exists if (4.2) converges. Is λ ∈ σ(A), then (4.2) does not converge since the
resolvent does not exist. We can therefore find a sequence (λj)j ⊂ σ(A) with |λj | ↗ r(A) for j →∞
and Rλj does not exist. So the series in (4.2) does not exist, from which we conclude, that the inner
radius of convergence must be r(A).

To show the identity (4.1), we use the Cauchy–Hadamrd formula

r = lim sup
k→∞

‖Ak‖
1
k = lim

k→∞
‖Ak‖

1
k , (4.3)

where in the last equality we used Exercise 1.3. This proves r = r(A). �
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