Names:	Exercise	7.1	7.2	7.3	\sum
	Points:				

Functional Analysis 2 – Exercise Sheet 7

Winter term 2019/20, University of Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke Sebastian Nill

denis.brazke@uni-heidelberg.de snill@mathi.uni-heidelberg.de

Exercise 7.1

Let $H = L^2(\mathbb{R}^n, \mathbb{C})$ and $\mathcal{F} \colon H \longrightarrow H$ be the Fourier transform. Show that $\sigma_p(\mathcal{F}) = \{\pm 1, \pm \mathbf{i}\}.$

Hint: Apply the Fourier transform several times to the eigenvalue equation. Compute the Fourier transforms of functions of the form $x e^{-x^2}$, $(1 + x^2) e^{-x^2}$ and $x (1 + x^2) e^{-x^2}$.

Exercise 7.2

Let $j \in \{1, ..., n\}$ and let $f \in L^2(\mathbb{R}^n, \mathbb{C})$. Show that there exists a unique solution $u \in H^1(\mathbb{R}^n, \mathbb{C})$ such that $(\mathbf{i} \pm \mathbf{i}\partial_j)u = f$ almost everywhere in \mathbb{R}^n .

Exercise 7.3

Let X be a Banach space and $T \in \mathcal{L}(X)$. Let $f \colon \mathbb{R}^n \longrightarrow X$ be Bochner integrable. Show that Tf is a Bochner integrable function and that

$$\int_{\mathbb{R}^n} Tf(x) \, \mathrm{d}x = T\Big(\int_{\mathbb{R}^n} f(x) \, \mathrm{d}x\Big). \tag{3.1}$$

Hint: A quick repetition of the Bochner integration theory: A function $g: \mathbb{R}^n \longrightarrow X$ is called *simple* if there exist finitely many Lebesgue measurable sets $\{A_j\}_j$ with $|A_j| < \infty$ and elements $\{\alpha_j\}_j \subset X$, such that $g = \sum_j \alpha_j \chi_{A_j}$. For simple functions we define the Bochner integral

$$\int_{\mathbb{R}^n} g(x) \, \mathrm{d}x := \sum_j \alpha_j \, |A_j|. \tag{3.2}$$

A function $h: \mathbb{R}^n \longrightarrow X$ is called *Bochner measurable* if there exists a sequence $(g_k)_k$ of simple functions, such that $g_k \to h$ pointwise almost everywhere. A Bochner measurable function $f: \mathbb{R}^n \longrightarrow X$ is called *Bochner integrable* if there exists a sequence of simple functions $(g_k)_k$, such that $g_k \to f$ almost everywhere and

$$\int_{\mathbb{R}^n} \|g_i(x) - g_j(x)\| \, \mathrm{d}x \to 0 \qquad \text{as } i, j \to \infty.$$
(3.3)

We then define the Bochner integral of f via

$$\int_{\mathbb{R}^n} f(x) \, \mathrm{d}x \coloneqq \lim_{k \to \infty} \int_{\mathbb{R}^n} g_k(x) \, \mathrm{d}x.$$
(3.4)

In order to show the statement: consider first simple functions and then go to the limit.