Exercise	5.1	5.2	5.3	5.4	5.5	5.6	\sum
Points:							

Functional Analysis 2 – Exercise Sheet 5

Winter term 2019/20, University of Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke Sebastian Nill

denis.brazke@uni-heidelberg.de snill@mathi.uni-heidelberg.de

Exercise 5.1

Let H be a separable Hilbert space and $A \in \mathcal{J}_2(H)$. Show that A is a compact operator.

Hint: Find an approximation of finite-rank operators.

Exercise 5.2

Let X be a Banach space and let $K \in \mathcal{L}(X)$ be a compact operator. Let $U \subset X$ be open, such that $0 \in U$ and let $N: U \longrightarrow X$ such that

$$\frac{\|Nx\|}{\|x\|} \longrightarrow 0 \qquad \text{for } \|x\| \to 0. \tag{2.1}$$

Assume there exists a $\lambda \in \mathbb{K} \setminus \{0\}$ and a sequence $(\lambda_k)_k \subset \mathbb{K}$ and $(x_k)_k \subset U$ with the following properties:

- a) $x_k \neq 0$ for all $k \in \mathbb{N}$ and $x_k \to 0$ as $k \to \infty$.
- b) $\lambda_k \neq \lambda$ for all $k \in \mathbb{N}$ and $\lambda_k \to \lambda$ as $k \to \infty$.
- c) $\lambda_k x_k = K x_k + N x_k$ for all $k \in \mathbb{N}$.

Show that λ is an eigenvalue of K.

Hint: Assume that λ is not an eigenvalue and use theorems of Fredholm operators to obtain a suitable resolvent. Find a representation for x_k in terms of that resolvent and lead this to a contradiction.

Exercise 5.3

Let H be a separable Hilbert space and let $A \in \mathcal{L}(H)$ be a compact and self-adjoint operator. Let $a^* \geq 0$ be the biggest eigenvalue of A and $a_* \leq 0$ be the smallest eigenvalue of A.

- a) Show that one of the two equalities $a^* = ||A||$ or $a_* = -||A||$ holds.
- b) Let $B \in \mathcal{L}(H)$ be another compact and self-adjoint operator. Let $b^* \geq 0$ be the biggest eigenvalue of B and $b_* \leq 0$ be the smallest eigenvalue of B. Let $\lambda^* \geq 0$ be the biggest eigenvalue of A + B and $\lambda_* \leq 0$ be the smallest eigenvalue of A + B. Show that

$$\lambda^* \le a^* + b^*, \qquad \lambda_* \ge a_* + b_*. \tag{3.1}$$

Exercise 5.4

Let $\mathcal{H} := L^2((0,1),\mathbb{C})$ and $\mathcal{D}(A) := \{ f \in H^2((0,1),\mathbb{C}) : f(0) = f(1), f'(0) = f'(1) \}$. Let $A : \mathcal{D}(A) \longrightarrow \mathcal{H}$ be the periodic Laplace operator (see Example 1.21). Determine all eigenvalues and eigenfunctions of A. Do these eigenfunctions form an orthonormal basis of \mathcal{H} ? Justify your answer.

Exercise 5.5

Let $\mathcal{H} := L^2((0,1),\mathbb{C})$. Define the operator

$$Au(x) := \int_0^x u(y) \, \mathrm{d}y$$
 for all $u \in \mathcal{H}$. (5.1)

- a) Show that $A \colon \mathcal{H} \longrightarrow \mathcal{H}$ is a compact operator.
- b) Determine $\sigma_p(A)$ and $\sigma(A)$.
- c) Is A a self-adjoint operator? Justify your answer.

Hint: You can use compact embedding theorems from the theory of Sobolev spaces.

Exercise 5.6

Let H be a separable Hilbert space and $A \in \mathcal{L}(H)$ be self-adjoint. Let $N \in \mathbb{N} \cup \{\infty\}$. Show that there exists a decomposition

$$H = \bigoplus_{n=1}^{N} H_n \tag{6.1}$$

with subspaces $H_n \subset H$ for every $n \in \{1, ..., N\}$, such that:

- a) For every $n \in \{1, ..., N\}$ the space H_n is A invariant, i.e. for $x \in H_n$ we have $Ax \in H_n$.
- b) For every $n \in \{1, ..., N\}$ there exists $y_n \in H_n$, such that y_n is cyclic for the restriction $A|_{H_n}$, i.e.

$$H_n = \overline{\{f(A)y_n : f \in C^0(\sigma(A))\}}. \tag{6.2}$$

Hint: Use the theorem of Stone-Weierstraß and Zorn's lemma.