Names:	Exercise	4.1	4.2	4.3	\sum
	Points:				

Functional Analysis 2 – Exercise Sheet 4

Winter term 2019/20, University of Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke Sebastian Nill

denis.brazke@uni-heidelberg.de snill@mathi.uni-heidelberg.de

Exercise 4.1

Let H be a separable Hilbertspace and $A \in \mathcal{J}_1$. Show that the series $\sum_k (\varphi_k, A\varphi_k)$ converges absolutely for every orthonormal basis $(\varphi_k)_k \subset H$ and that the limit is independent of the choice of the orthonormal basis.

Hint: For the independence you can use that every operator in $A \in \mathcal{J}_1$ is decomposable into $A = A_+ - A_-$, where $A_+, A_- \ge 0$ and $A_+A_- = 0$.

Exercise 4.2

Let X and Y be Banach spaces and $A \in \mathcal{L}(X, Y)$ be a Fredholm operator. Show that the adjoint operator $A' \in \mathcal{L}(Y', X')$ is a Fredholm operator and $\operatorname{ind}(A') = -\operatorname{ind}(A)$.

Exercise 4.3

Let X, Y and Z be Banach spaces and let $B \in \mathcal{L}(X, Y)$ and $A \in \mathcal{L}(Y, Z)$. Show that if two of the three operators A, B and AB are Fredholm operators, then also the third one is a Fredholm operator and it holds

$$\operatorname{ind}(AB) = \operatorname{ind}(A) + \operatorname{ind}(B). \tag{3.1}$$

In order to do so, show the following statements:

- a) Show that $\dim \ker(AB) = \dim \ker(B) + \dim(\ker(A) \cap \operatorname{ran}(B))$.
- b) Decompose the spaces Y, ker(A) and ran(B) suitably and show, that Z decomposes in ran(AB), a subspace of ran(A) and a closed subspace $Z_0 \subset Z$.
- c) Show that codim $ran(AB) = codim ran(A) + codim ran(B) dim ker(A) + dim(ran(B) \cap ker(A)).$
- d) Show the closedness of the ranges.
- e) Conclude the statement.

Hint: Considering b): use more than one decomposition of the space Y.

This exercise will be longer than the others since there are a lot of cases to consider, so the amount of points will be doubled for this exercise. Apart from d) and e) this is an exercise in linear algebra.