Names:	Exercise	2.1	2.2	2.3	2.4	\sum
	Points:					

Functional Analysis 2 – Exercise Sheet 2

Winter term 2019/20, University of Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke Sebastian Nill

denis.brazke@uni-heidelberg.de snill@mathi.uni-heidelberg.de

Exercise 2.1

Let H be a separable Hilbert space and let $A: \mathcal{D}(A) \longrightarrow H$ and $B: \mathcal{D}(B) \longrightarrow H$ be two symmetric operators such that $A \subset B$. Show that $B^* \subset A^*$ and conclude that any symmetric extension of a self-adjoint operator is the operator itself.

Exercise 2.2

Let *H* be a Hilbert space and $A: \mathcal{D}(A) \longrightarrow H$ be a symmetric and closed operator. In this exercise we want to show that the function $\lambda \longmapsto \dim \ker(A^* - \lambda \operatorname{id})$ is constant on the half spaces $\mathbb{C}_{\pm} := \{\lambda \in \mathbb{C} : \pm \Im(\lambda) > 0\}$. We will restrict ourselves to the upper halfspace \mathbb{C}_+ , the argument for \mathbb{C}_- is analogueous.

- a) Let $M, N \subset H$ be closed subspaces such that $M \cap N^{\perp} = \{0\}$. Show that dim $M \leq \dim N$.
- b) Let $\lambda \in \mathbb{C}$ such that $\Im(\lambda) \neq 0$. Show that $\operatorname{ran}(A \lambda \operatorname{id})$ is closed.
- c) Let $\lambda \in \mathbb{C}_+$ and $\mu \in \mathbb{C}$ such that $|\lambda \mu| < \Im(\lambda)$. Show that $\ker(A^* \mu \operatorname{id}) \cap \ker(A^* \lambda \operatorname{id})^{\perp} = \{0\}$.
- d) Show that $\lambda \mapsto \dim(A^* \lambda \operatorname{id})$ is locally constant on \mathbb{C}_+ and conclude that this map is actually constant on the whole halfspace \mathbb{C}_+ .

Hint: Recall the identity $||(A - \lambda \operatorname{id})x||^2 = ||(A - \Re(\lambda) \operatorname{id})x||^2 + \Im(\lambda)^2 ||x||^2$. You can use that it holds $\operatorname{ran}(A^*)^{\perp} = \ker(A)$ for closed operators. In order to show c) use an indirect proof.

Exercise 2.3

Let $\mathcal{H} \coloneqq L^2((0,1),\mathbb{C}), \mathcal{D}(A) \coloneqq H^2_0((0,1),\mathbb{C})$ and $\mathcal{D}(B) \coloneqq H^1_0((0,1),\mathbb{C})$. Let $\varepsilon > 0$ and define the operators $A \colon \mathcal{D}(A) \longrightarrow \mathcal{H}$ and $B \colon \mathcal{D}(B) \longrightarrow \mathcal{H}$ via

$$A \coloneqq -\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2, \qquad \qquad B \coloneqq \mathbf{i}\varepsilon \frac{\mathrm{d}}{\mathrm{d}x}. \tag{3.1}$$

Show that $A + B \colon \mathcal{D}(A) \longrightarrow \mathcal{H}$ is a self-adjoint operator.

Hint: Recall Young's inequality: $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$ for $\frac{1}{p} + \frac{1}{q} = 1$ and a, b > 0.

Exercise 2.4

Let $H = L^2(\mathbb{R}^n, \mathbb{C})$ and $A \coloneqq \mathcal{D}(A) \longrightarrow H$ be a self-adjoint operator. Let $\psi \in C^1([0, \infty), \mathcal{D}(A))$ be a solution to the time-dependent homogeneous Schrödinger equation

$$\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}t}\psi(t) = A\psi(t) \qquad \qquad \text{for all } t > 0 \qquad (4.1)$$

with initial data $\psi(0) = \psi_0 \in \mathcal{D}(A)$. Let $\|\psi_0\| = 1$. Show that $\|\psi(t)\| = 1$ for all t > 0.