Aufgabe	1.1	1.2	1.3	1.4	\sum
Punkte:					

Funktionalanalysis 2 – Übungsblatt 1

Wintersemester 2019/20, Universität Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke

Sebastian Nill

denis.brazke@uni-heidelberg.de snill@mathi.uni-heidelberg.de

Aufgabe 1.1

Sei H ein Hilbertraum und $(x_n)_n \subset H$ eine schwach-konvergente Folge mit Grenzwert $x \in H$. Zeigen Sie die folgenden Aussagen:

- a) $||x|| \le \liminf_{n \to \infty} ||x_n||$.
- b) Falls $||x_n|| \to ||x||$, dann gilt $x_n \to x$ in H.
- c) Sei $(y_n)_n \subset H$ eine in H konvergente Folge mit Grenzwert $y \in H$. Dann gilt $(x_n, y_n) \to (x, y)$.

Aufgabe 1.2

Sei H ein separabler Hilbertraum und $\{w_n\}_n \subset H$ ein Orthonormalsystem paarweiser verschiedener Elemente in H. Sei $A: H \longrightarrow H$ ein kompakter Operator. Zeigen Sie, dass $Aw_n \to 0$ in H.

Aufgabe 1.3

Sei X ein Banachraum und $A \in \mathcal{L}(X)$. In dieser Aufgabe wollen wir zeigen, dass

$$\lim_{m \to \infty} \|A^m\|_{X'}^{\frac{1}{m}} = \inf_{m \in \mathbb{N}} \|A^m\|_{X'}^{\frac{1}{m}},\tag{3.1}$$

insbesondere, dass der Grenwert existiert. Definiere dazu die Folge

$$a_m := \log ||A^m||_{X'}$$
 für alle $m \in \mathbb{N}$. (3.2)

- a) Zeigen Sie, dass $a_{n+m} \leq a_n + a_m$ für alle $m, n \in \mathbb{N}$.
- b) Sei n = mq + r, wobei $n, m, q, r \in \mathbb{N}$ und $0 \le r \le m 1$. Zeigen Sie, dass

$$\limsup_{n \to \infty} \frac{a_n}{n} \le \frac{a_m}{m}.$$
 (3.3)

c) Zeigen Sie, dass

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \in \mathbb{N}} \frac{a_n}{n} \tag{3.4}$$

und folgern Sie hieraus (3.2).

Aufgabe 1.4

Sei X ein Banachraum und $A \in \mathcal{L}(X)$. Zeigen Sie, dass

$$\sup_{\lambda \in \sigma(A)} |\lambda| = \lim_{m \to \infty} ||A^m||_{X'}^{\frac{1}{m}}.$$
(4.1)

Hinweis: Berechnen Sie den Konvergenzradius der Laurent-Reihe der Resolvente mit der Formel von Cauchy-Hadamard für banachraumwertige Funktionen und argumentieren Sie, dass der Konvergenzradius gerade der Spektralradius ist. Nutzen Sie die Analytizität der Resolvente.