Höhere Mathematik für's Studium der Physik 3 Aufgabenblatt 7

Wintersemester 2018/2019

Prof. Dr. Hans Knüpfer, Lukas Hahn

Abgabetermin: 07.12.2018, 10:00 Uhr email: lhahn@mathi.uni-heidelberg.de

Aufgabe 7.1 Schnitt und Summe von L^p -Räumen

Für einen Maßraum betrachten wir die zugehörigen L^p -Räume für $1 \le p < q < r \le \infty$. Außerdem sei $L^p \cap L^r$ der Schnitt und $L^p + L^r := \langle L^p \cup L^r \rangle_{\mathbb{R}}$ die innere Summe. Beweisen Sie: $L^p \cap L^r \subset L^q \subset L^p + L^r$. Hinweis: Verwenden Sie für die erste Inklusion die Hölder-Ungleichung und betrachten Sie für die zweite Inklusion eine Funktion f auf $\{x \mid |f(x)| > 1\}$ und $\{x \mid |f(x)| \le 1\}$.

Aufgabe 7.2 Parallelogramm-Identität

Beweisen Sie: Auf einem normierten Raum $(V, \|\cdot\|)$ über \mathbb{R} gibt es genau dann ein Skalarprodukt mit $\langle x, x \rangle = \|x\|^2$, falls die Parallelogramm-Identität

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2, \quad x, y \in V$$

gilt. Folgern Sie, dass der normierte Raum $(L^p(\mathbb{R},\lambda),\|\cdot\|_p)$ für $p\neq 2$ kein Hilbertraum ist. Hinweis: Betrachten Sie den Ausdruck $\langle x,y\rangle:=\frac{1}{4}\|x+y\|^2-\frac{1}{4}\|x-y\|^2$, $x,y\in V$.

Aufgabe 7.3 Nicht-separable Hilberträume

- (a) Zeigen Sie, dass $L^{\infty}(\mathbb{R}^n, \lambda_n)$ nicht-separabel ist. *Hinweis*: Berechnen Sie den Abstand der Funktionen $\{\chi_{B_r(0)}\}_{r>0} \subset L^{\infty}$ zueinander.
- (b) Wir betrachten den Vektorraum

$$H:=\{f:[0,1]\to\mathbb{R}\,|\,\mathrm{spt}(f)\text{ ist h\"ochstens abz\"{a}hlbar und }\sum\nolimits_{x\in[0,1]}|f(x)|^2<\infty\}.$$

Zeigen Sie, dass H zusammen mit dem Skalarprodukt $\langle f,g \rangle := \sum_{x \in [0,1]} f(x)g(x)$ ein nicht-separabler Hilbertraum ist. Hinweis: Identifizieren Sie den relevanten Maßraum und verwenden Sie Satz 3.24.

Aufgabe 7.4 Metrisierbarkeit von Konvergenzbegriffen

- (a) Zeigen Sie: Es gibt keine Metrik d auf $L^1(\mathbb{R}, \lambda)$ mit der Eigenschaft, dass eine Folge $(f_k)_k$ genau dann punktweise f.ü. gegen eine Grenzfunktion f konvergiert, wenn sie bezüglich d gegen f konvergiert, d.h. $d(f_k, f) \to 0$ für $k \to \infty$. Hinweis: Zeigen Sie zunächst, dass eine Folge $(f_k)_k$ in einem metrischen Raum bezüglich d gegen f konvergiert, wenn jede Teilfolge $(f_{k_l})_l$ eine gegen f bezüglich d konvergente Teilfolge $(f_{k_{l_m}})_m$ besitzt. Wenden Sie dann Proposition 3.30 auf ein geeignetes Beispiel an.
- (b) Es sei (X, \mathcal{E}, μ) ein Maßraum mit $\mu(X) < \infty$. Wir betrachten den Raum der messbaren Funktionen $L^0(X, \mu) := \{f : X \to \mathbb{R} \mid f \text{ messbar}\} / \sim$, wobei $f \sim g : \Leftrightarrow f(x) = g(x)$ f.ü.. Auf L^0 definieren wir den Abstandsbegriff

$$d(f,g) := \int_X \frac{|f-g|}{1+|f-g|} d\mu.$$

Beweisen Sie, dass (L^0,d) ein metrischer Raum ist und dass eine Folge $(f_k)_k$ genau dann bezüglich d gegen f=0 konvergiert, wenn sie im Maß gegen f=0 konvergiert. Hinweis: Für $x \in [0,\infty)$ ist die Funktion $x \mapsto \frac{1}{1+x}$ monoton wachsend und durch 1 beschränkt. Integrieren Sie für eine Richtung getrennt über $\{f \mid |f_n-f| > \delta\}$ und $\{f \mid |f_n-f| \le \delta\}$, für die andere Richtung nur über erstere Menge.